Isolation and Expression of an Eoinephrine-Synfhesizing Enzyme (PNMT) from Entamoeba Parasites
Entamoeba histolytica is a protozoan parasite known to cause infectious colitis and amoebic dysentery in humans. Its life cycle consist of two parts: the infectious cyst stage and the multiplying trophozoite stage. Epinephrine, a neurotransmitter in vertebrates, is released by the trophozoites during the process of cyst formation. The addition of epinephrine to in vitro cultures of amoebas causes them to encyst, and addition of compounds that prevent epinephrine’s activity inhibits encystations. Therefore, epinephrine plays a critical role in encystation in vitro. An understanding of the molecular intricacies of epinephrine-induced encystations may allow for pharmacological manipulation of epinephrine metabolism to control cyst formation in vitro. Drugs that either prevent cyst formation or induce it before a large amoebic population is present would result in the release of fewer cyst forms of the parasite, reducing parasite transmission from person to person. Although trophozoites release epinephrine, it is no known if E.histolytica synthesizes epinephrine or extracts it from the growth medium. Phenylethanolamine N-methyltransferase(PNMT) is the enzyme that catalyzes production of epinephrine norepinephrine. This study aims to determine the source of epinephrine by determining if E.histolytica contains a PNMT-type enzyme. PNMT amino acid sequences from several higher organisms were compared to identify conserved regions of the enzyme. These conserved amino acid sequences were then used to search for similar sequences in a database containing the recently sequenced amoeba genome. A PNMT-like gene was found in the E.histolytica database and cloned in bacteria. Yeast cells containing the cloned E.histolytica PNMT gene expressed PMT enzyme activity. This suggests that E.histolytica produces its own epinephrine, and is the most evolutionarily ancient eukaryote shown to do so. The use of inhibitors against PNMT activity is under investigation.
Study Biological Deoderization using Bacteria in Rumen of Ostrich
Although it is well known that, unlike the feces of a fowl, those of an ostrich\r do not produce foul smell, the impact of different enterobacteria on elimination of malodorous\r substances has not been seriously investigated. I sought to test the hypothesis that ostrich\r enterobacteria (OE) are useful to eliminate hydrogen sulfide (H2S) and ammonia (NH3), two\r important components of foul smell of the feces.
Effects of Transition Metal Ions on the Thermal Stability,Fire Retardant Properties and Rheological
A study was conducted to improve the thermal stability, fire retardant (FR)\r properties and rheological properties of ethy-lene vinyl acetate because of\r its growing use in commercial applications. The approach employed\r was to modify an organo-clay, Closite 20A (C20A), with transition metal\r ions (TMI). In this study eight transition metal salts were acquired for\r modification. It was observed that all TMI modified organoclay\r nanocomposites improved thermal stability through thermo-gravimetric\r analysis (TGA). Rheological testing was done using a parallel plate\r measuring system (PP MS) to determine the dependence of storage\r modulus and loss modulus of copper and iron modified organoclay\r nanocomposites relative to pure EVA 350. The process of gelation was\r also tested for by calculating the ratio between the loss modulus and the\r storage modulus. It was found that copper modified organoclay\r nanocomposites promoted gelation and thus decreased the fluidity of\r EVA 350. The intercalation of the TMI modified organoclays with the\r polymer matrix was determined by the use of small angle X-ray\r scattering (SAXS). Testing revealed that the intercalation was\r successful, further proving that the TMIs had improved thermal stability,\r FR properties and rheological properties,
Sub-Explorer
I came up with the idea to build a small submarine after researching the internet and discovering the problems in which divers had to face in dangerous and time consuming tasks. The Remotely Operated Vessel (ROV) was designed to perform hull inspections on boats to look for hull damage and leakage of contaminates such as oil or other chemicals into the water. Search, rescue and recovery, are also common tasks which need to be carried out by the police when searching for objects and items. The ROV has been constructed at a reasonably low cost for submersing in depths down to 10 metres. It is remotely operated therefore needing a tether cable to link up between the computer and the vessel. I built a computer case-top from parts that I already had to eliminate the need for an expensive laptop. A program that I wrote in QBASIC interprets input data from the operator and sends out signals to the various operations on the vessel such as to dive, surface, propel, etc. The entire project consisted of five individual technology processes. Key processes such as Propulsion, Maneuverability, Dive & Surface capability, Imaging system, and the Control system. Each process required a cost effective and practical solution but still needing to function efficiently and be low maintenance. Through continuous testing and trial & error I feel I came up with the best possible solutions with the limited amount of time and money I had to spend. I wouldn’t have got as far as I have without the help and support from friends, family and local businesses. They helped with ideas and advice from time to time, help with funding, and the sponsorship of materials and tools. Now that the ROV is complete, I have been able to trial and test it in a swimming pool. Apart from discovering a few minor leaks in the hull and ‘bugs’ in the computer program, I was able to witness the success of the vessel under operation and find any improvements that could be done to make it work better in future. With further more tests at greater depths the ROV will soon be at the stage where it can perform hull inspections of boats and find lost objects and items underwater. I feel it has the opportunity to be a marketable device to underwater industries all over the world.
The Characterization of Human Epidermal Stem Cells
The role of Notch signaling in the regulation of growth and differentiation of epithelial stem cells is poorly understood. While specific markers for epidermal stem cells have not yet been identified, members the Notch signaling pathway have been reported to be differentially expressed in the human epidermis. This study sought to demonstrate the presence and distribution of Notch and its ligands, Delta and Jagged, in human keratinocytes, and thereby characterize this subpopulation. Human neonatal foreskin samples were used to obtain isolated epidermal cells. Cells that were shown to be negative for connexin43, a gap junction protein, and positive for keratin14, a basal marker, were classified as presumptive stem cells (PSC). This sorted subpopulation was shown to be small and agranular by flow cytometry analysis. After two weeks in cell culture, PSC revealed a proliferative potential three times greater than non-sorted cells. The PSC exhibited increased expression of Delta and Jagged ligands than the general population. Additionally, RT-PCR confirmed the presence of Jagged and Delta in keratinocytes; however, only Jagged was detected in immunohistochemistry tests. Members of the Notch family were identified by immunohistochemistry in the epithelium and also at the protein- and mRNA-level. The data suggests that variations in the expression of members of the Notch signaling pathway could potentially be used as markers for stem cells of the epithelium; however, further research is necessary to make definitive conclusions, which would provide better insight into Notch regulatory pathways. This understanding could one day allow for the eventual treatment of epithelial damage caused by various skin diseases, injuries, or burns.