Potential Diagnosis of Cancerous Cells Through Utilising Optical Spectroscopy
Cancer is responsible for an estimated 9.6 million deaths in 2018. Deaths from cancer worldwide are projected to reach over 13 million in 2030. Thus, developing a device that has the capability to solve today’s toughest global challenge is crucial by utilizing a simple yet robust approach - “SEEING THE UNSEEABLE” through bold innovation. Although removing cancer is much more effective than either radiation or chemotherapy, when unseen residual cancer cells remain, they could grow back into tumour overtime. The reoccurrence of cancer contributes to a greater risk of death. Hence, launching a system that is able to distinguish between the cancerous cell and normal cell is ultimately essential to make sure no cancer is left behind during surgery. This robust optical system is established with quantitative approach by exploring the integration of an algorithm into the developed software. The end result of this device has the capability to provide users an accurate numerical pH value. The developed system is integrated with the smart IoT gateway capability whereby this powerful analytical device is incorporated with the real-time monitoring, data transformation and data analyzer. Harnessing the power of technology lets us fight cancer better. Each time a pathologist analyzes tissue after operation, it can take up 2 to 3 days because the tissue has to be frozen, thinly sliced, and stained so it can be viewed under the microscope during the process of biopsy. Thus, it is crucial to invent this Surgeons’ VisionMetric device which has an IoT-based microcontroller that is capable of providing real-time numerical value on-site.
Fabrication and Characterization of Biological Electrospinning Nanofiber Scaffold Based on Cellulose Diacetate-Gelatin-Green Tea for Tissue Engineering Applications
Tissue engineering has developed novel therapies such as many types of wound dressings, bio-pads, scaffolds and bandages, in order to reduce the effects of deep and extensive skin wounds. Here, we have produced an electrospun nanofiber scaffold, based on biodegradable materials such as gelatin (as a natural and hydrophilic polymer) and cellulose diacetate (with optimal biodegradability), in order to increase wound healing using nanotechnology. We also used green tea extract for its anti-oxidant and anti-bacterial effect, to improve the biological properties of the scaffold. In the fabrication process, two polymer solutions: 1. Gelatin (with acetic acid solvent) and 2. Cellulose Diacetate (with acetone solvent) mixed with green tea extract, were prepared. Then they were spun using a two-nozzle electrospinner to produce a hybrid nanofiber scaffold. SEM images showed enough finesse and uniformity of the produced scaffold to simulate the extracellular matrix. Further, measuring the contact angle of water droplet and the web surface, indicated optimal hydrophilicity of the nanofiber scaffold, which controls the level of scaffold degradability and cell adhesion. Also, the results of antibacterial tests for two bacterial strains (E. coli and S. aureus) showed the antibacterial characteristics of the extract-containing scaffold. In addition to previous tests, evaluation of fibroblast morphology on the nanofiber scaffolds, indicated appropriate cell adhesion and expansion, that confirms the biocompatibility of this produced scaffold.