出『棋』致勝
正如大家所知:「鴿子棋」又稱「對頂棋」,是一種規則簡單,清晰易懂的遊戲,其玩法複雜且富挑戰性,便想要將其致勝的方法完全找出,可是過程中在網路上發現名為鴿子棋的遊戲可以直接在線上與電腦比賽,由此可見其致勝的方法一定被研究出來了,於是想到改變遊戲規則-最多走3 步來研究,發現找到的一些致勝點在鴿子棋規則下是不適用的,且在網站中並未發現有類似的遊戲,也就是說這算是新的遊戲。經歸納後發現:設「a1,a2 ,a3 ,…,an」為一組棋盤m×n 的間隔,若a1, a2 , a3 ,…,an 中有大於3 的數字,先將其減去4 的倍數,得到新數據「b1, b2 , b3 ,…,br」,其中1≦b1, b2 , b3 ,…,br≦3,而當r為偶數時,若「間隔」可拆成x組棋盤8x2的致勝點,則「a1,a2 ,a3 ,…,an」為一組mxn棋盤的致勝點;當r為奇數時,若若「間隔」可拆成1組棋盤8x3及y組棋盤8x2的致勝點,則「a1,a2 ,a3 ,…,an」為一組棋盤mxn的致勝點。另外,我們也歸納出快速檢驗致勝點的方法:若有一組間隔,其\r 中有數字大於或等於4,則先將該數字減去4 的倍數後,而能將該組數據拆成若干組「1,1」、「2,2」、「3,3」或「1,2,3」的組合,而沒有剩下任何數字時,則此數據即為致勝\r 點。還有,在整個研究中我們也探討其致勝的規律、原因及致勝移子的技巧等相關性質;雙方棋子在「布局」及「對弈」的過程式相當複雜及有趣的,若能利用本研究結果,不但方法容易、步驟簡便、且不易出錯,更能達到省時間與高效率!使我們充分體會「從遊戲中學數學」的樂趣。
千「迴」百轉的遞迴圖形
在遞迴式an+2=|an+1|-an中簡單的代入幾個值,發現有九個一循環的現象。在一番巧思之下,我們先證明:函數f1(x)分別為1及-1、f2(x)=x,且fn+2(x)=|fn+1(x)|-fn(x), ?n?N, f5(x)與f6(x)圖形對稱於x=1/2,進一步證得遞迴式循環,再將初始值伸縮至a1, a2為任意實數值。解法固然令人拍案叫絕,但令我們深深著迷,決定投入大量心血在此研究的原因,乃是遞迴式an+2=β|an+1|-an,當0<β<1時,點(an, an+1)構成遞迴圖形的種種現象。 我們大量使用了函數及圖形分析的方法,定義函數fβ(cosθ, sinθ)=(sinθ, β|sinθ|-cosθ),發現f (n)β皆為 ?連續函數;?一對一;?(cosθ, sinθ)逆時針旋轉時f (n)β(cosθ, sinθ)同樣逆時針旋轉。藉由上述的性質推得遞迴圖形?在角度上稠密;?形狀與初始值無關;?初始值的改變產生相似的遞迴圖形。 在研究過程中,發現β=0.86的遞迴圖形有別於其他β值,有待未來,我們四人能一窺遞迴圖形的終極密碼。