全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

數學科

有趣的同心三角形

本研究從著名的歐拉三角形公式出發,我們將圓內接同內心三角形,推廣至圓內接同重心三角形和圓內接同垂心三角形。有關同重心與同垂心三角形的存在性與作圖範圍,我們巧妙利用原三角形的九點圓來進行刻劃!再將研究項目放在同心三角形的邊的包絡線,我們先給出其焦點,再用純幾何方式來證明銳角三角形時,其包絡線為橢圓;鈍角三角形時,包絡線為雙曲線;直角三角形時,則是退化為垂心與外心。值得一提的是,本研究進一步整合同內心、同垂心、同重心三角形,發現面積成等比之關聯性。最後考慮將圓內接改成圓外切的同心三角形,這個難度提升很多,我們成功利用奈格爾線來處理這個研究項目,它顯著不同於圓內接同重心三角形。

轉呀轉~凸多邊形車輪與曲線的關係

本研究希望能找出一種能使多邊形車輪平穩前進的曲線方程式。由於車輪之中心高度不變時即可達成平穩前進的目標,本研究先是追蹤正多邊形的中心正下方與該圖形的交點所形成的曲線,得出此曲線圖形的方程式。接著因圓內接多邊形可切割成多個直角三角形,利用畢氏定理與三角函數推導,得出圓內接 n 邊形車輪的中心在同高度下滾動時,中心正下方與該圖形的交點之曲線恰為懸鏈線方程式。 在刻劃完正n邊形的情況後,進而推廣至一般圓內接 多邊形以及勒洛多邊形的相關特性。在未來,將可以為多邊形車輪的設計與運行提供新的思路,並可能在交通、機械設計及自動化設備中發揮重要作用,了解懸鏈線的特性將促進相關技術的創新與發展。

依〝形〞組隊,優勢再現! ~ 六邊形蜂巢堆砌策略再探討

我運用學姐前三年研究的結論,採用初始配對方式,針對共有格數量、角對角數量及各類模組間最佳的組合研究:「在六邊形蜂巢中如何擺放有色六邊形,可求得外圍白色六形總數最少?」且依據模組間的相互關係值,求得K值(包圍的白色六邊形總數)計算公式。 在延伸活動中,我沿用初始配對模式,找出平面長鏈形六邊形的蜂巢堆砌模式,也求得足球這種立體六邊形組合的蜂巢堆砌模式。

棋盤中放入最多骨牌數及方法數探討

本研究改編自2015 EGMO P2,探討在𝑛×𝑚的棋盤中放入最多的1×𝑡或𝑡×1的骨牌,並使得每一個𝑡×𝑡還有空間再放入一個骨牌的方法數。原本題目是𝑡=2,𝑛=𝑚為偶數的情況。於是我先從𝑡=2開始研究,推導出(1)𝑛,𝑚皆為偶數、(2)𝑛,𝑚一奇一偶、(3) 𝑛,𝑚皆為奇數的答案。接著再推廣到(4)任意的𝑡且𝑡∣𝑛=𝑚的結果。最後再討論(5)𝑛,𝑚分別為𝑡的倍數、模𝑡餘1的數,或其他 數等不同可能性得出的不同答案。

領域展開-Dual graph 解 Hamilton cycle在平面圖上的存在性問題

本研究以對偶圖的性質,取代以往著重點或邊數量的方法,探討平面圖中漢米爾頓迴圈的存在性。我們設計一套定理,判斷對偶圖對應之原圖是否存在漢米爾頓迴圈,並提出「T 搜索」,有效降低電腦計算的時間複雜度。此外,我們建立多項化簡定理,能在不影響迴圈存在與否的前提下,透過邊、點的替換與收縮,或圖的結構分解來簡化圖形。研究中也討論 Herschel Graph 與 Tutte’s Graph,並提出當圖中出現特定結構時,原圖不具漢米爾頓迴圈的判別條件。最後,成果可用於構造具漢米爾頓迴圈平面圖之對偶圖,並期望數學方法推導出無漢米爾頓迴圈的平面圖,或用電腦窮舉所有無漢米爾頓迴圈平面圖之對偶圖,以便延伸討論。

蒙提霍爾問題中選擇期望值與多變數衍伸性操作之研究

典型蒙提霍爾問題(Monty Hall Problem)(李永乐 [1]),又以別稱「三門問題」廣為流傳,是一項源於賽局理論的機率謎題,得名於《Let's Make a Deal》節目主持人。遊戲規則表明,在三扇門後共有一件獎品,參賽者選擇一扇門後,主持人會打開另一扇無獎品門,接著參賽者有權選擇是否換門,此時若選擇換門則勝率將提高到 2/3,這對許多人而言並不直覺,這也正是這個問題的有趣之處。 本篇研究由典型蒙提霍爾問題出發,逐步將結果推廣至七變數組方程式,並進行多種開門規則、非全同機率門,與多回合換門機制、中獎個數機率分布之討論。最終推導出玩家各執行策略及與之對應之期望值和機率函數方程,除強化已知文獻結果之泛用性外,也使典型三門問題具有更大的調整自由度。

殊途同歸─不可思議的七線共點

本研究探討三角形中線段共點的幾何性質,特別是與奈格爾點相關的七線共點現象,這七條直線包括三條特定的作圖線、三條周長平分線、以及內心與重心的連線。研究動機源於對奈格爾點定義及其作圖方法的探究。研究過程中,我們透過Dussau作圖法、三角形性質及解析幾何等方法,從已知條件推導出相關的幾何性質,並進行了驗證。研究發現這三條作圖線分別與三內角平分線平行,可視為內心在位似變換下的映射。本研究亦探討此類作圖法是否可遷移應用至其他三角形特殊點(如內心、重心)。這些發現證明了即使直線的構成方式看似複雜或「殊途」,最終也能「同歸」於同一個點,展現了幾何的奧妙。

四邊形內接三角形的面積

本研究從一道科學班入學考題出發,突破傳統代數解法限制,提出創新的幾何作法,並系統性推廣至更廣泛的圖形。透過將內接三角形分為【點邊邊】,與【邊邊邊】的兩種類型。結合使用 GeoGebra 進行作圖與輔助推理。使用正弦定理、餘弦定理與相似形等幾何原理進行推導。探討其內接三角形與周圍多邊形的面積關係。從長方形開始,逐步推廣與觀察,歸納出面積公式的形式,並進一步應用至其他凸多邊形,建立更普遍性的面積關係公式與解題策略。

共頂點正多邊形共線蝴蝶對稱圖形性質及幾何不變量

基於Anubhav Mishra提出的尚未被證明問題:由基準三角形OAB之兩邊OA與OB生成共頂點O兩正方形,在兩正方形中選取兩組對應點,並做交叉連線相交於N點,則AB之中點M與O、N具有三點共線之性質(此線稱為共軛對稱軸)。首先提出此原題的不同證明,再推廣至正n邊形,並找到一般化的必要條件及廣義共線性質。 研究結果發現並證明:在正n邊形共線蝴蝶對稱圖形中,存在兩稜線在共軛對稱軸鉛直方向投影長相等,及其成形的臨界角範圍;蝴蝶翅膀種類公式、衍生類別及總數量;面積與稜線長的幾何不變量;基準三角形三邊對應之共軛對稱軸共點於其重心;當n為偶數,共軛對稱軸垂直特定共軛對稱點連線段。當n趨近於∞時,共線蝴蝶對稱圖形收斂到圓內接等腰梯形。

等角六邊形的秘密

任意等角六邊形𝐴𝐵𝐶𝐷𝐸𝐹之6邊的延長線,即會得到兩個正三角形Δ𝐼𝐽𝐾、Δ𝐼′𝐽′𝐾′,其中三組對邊以[(𝑎,𝑏,𝑐),(𝑎′,𝑏′,𝑐′)]表示,則三組對邊均相互平行,任兩相鄰邊長的和必等於其對邊長的和(𝑎+𝑏′=𝑎′+𝑏)(𝑏+𝑐′=𝑏′+𝑐)(𝑐+𝑎′=𝑐′+𝑎),則有以下成果: 1.若已知四邊長度,且其中三邊相鄰,即可決定唯一之等角六邊形。 2.三組對邊都相等或都不相等,才能決定一個等角六邊形。 3.兩組有相同公差的數列,各取連續三個正數為邊長,則可決定唯一的等角六邊形。 4.一組等差數列中,任取6個連續正數(𝑎1,𝑎2,𝑎3,𝑎4,𝑎5,𝑎6)為邊長,可形成兩個相異的等角 六邊形([(𝑎1,𝑎2,𝑎3),( 𝑎4,𝑎5,𝑎6)]、[(𝑎1,𝑎3,𝑎5),( 𝑎2,𝑎4,𝑎6)])。 5.當等角六邊形邊長為完全平方數時,可以求出一些特列。 6.討論等角六邊形的面積與用相同大小正三角內鑲崁的個數。