Pedal Curve 的切線作圖
設Γ為一平面曲線而 P 為一定點 , 自 P 向γ所有的切線作對稱點,則所有對稱點所成的圖形Γ1 稱為曲線Γ對定點 P 的切線對稱作圖 , Γ1 對定點 P 的切線對稱作圖 Γ2 稱為曲線Γ對定點P的2-th 切線對稱作圖 , Γ2對定點 P的切線對稱作圖 Γ3稱為曲線Γ對定點 P的 3-th切線對稱作圖 ,…… 。以下是本文主要的結果:結論 A:當Γ為一圓形而 P 為圓上一點時 , 計算其 nth 切線對稱作圖 的方程式。結論 B:當Γ為任意平滑的參數曲線而 P 為任意一點時 , Γ的切線對稱作圖的切線 性質。結論 C:當Γ為任意平滑的參數曲線而 P 為(0,0)時, 計算其 nth 切線對稱作圖 的方程式。英文摘要:Given a plane curve Γand a fixed point P ,the locus of the reflection of P about the tangent to the curveΓis called the reflection to tangent line of Γwith respect to P.We denote Γ1 as the reflection to tangent line of Γwith respect to P, Γ2 as the reflection to tangent line of Γ1 with respect to P , Γ3 as the reflection to tangent line of Γ2 with respect to P ,and so on , we call Γn the n-th reflection to tangent line of Γwith respect to P. If Γ is a circle, and P is a point on the circle, we got the parametric equation of the nth reflection to tangent line of Γ with respect to P. And, for any parametric plane curve Γ; we got the method to draw the tangent of the reflection to tangent line of Γ.