根與係數關係—有符號的 Lucas 三角錐
本篇文章從”將βm1 +βm2 +βm3 分解成β1 +β2 +β3 , β1 β3 + β2 β1 +β2 β3 , β1 β2 β3 的非線性組合出發,令fm(a1, a2, a3) = βm1 +βm2 +βm3 ,m = 0,1,2,......,我們發現fm(a1, a2, a3)= , i,j,k? N ∪{0},代表 ai1 aj2 ak3且i+2j+3k=m 這一項的係數,在空間座標中,標記在(i,j,k)點上,結果得到許多類似巴斯卡三角錐圖形的相關性質。而 的絕對值在 k=0 時的圖形,是一個 Lucas 三角形 ,因此我們稱 的圖形為”有符號的Lucas 三角錐”。
在探討巴斯卡三角錐 和”有符號的Lucas 三角錐”在X-Y 平面上的奇偶性圖形時,結果竟然發現只要把巴斯卡三角錐的奇偶性圖形往 X 軸正向移動1 單位就能和”有符號的Lucas 三角錐”的奇偶性圖形全等,這使我們更想知道巴斯卡三角錐與”有符號的Lucas 三角錐”在空間中的奇偶性圖形之間的關係。
最後我們將 的相關性質推廣到四維的情形。