本研究旨在解決先前研究未解決的問題。而在本研究中對於對稱規則及非對稱規則的梅花棋遊戲,各提出兩大人工智慧演算法。分別是Minimax及Monte Carlo Tree Search。而在這之中,Minimax又被分為探索深度一層、兩層及三層、MCTS則是以模擬次數分為100、300、500、…、1900多個版本。而以目前的成果來說,我們認為其勝率並不理想。而主要的原因還是要歸咎於目前所有演算法的結果過於隨機化,而即使我們對於UCB公式進行優化,雖然勝率有所提升但仍然不符合我們的期待。為了解決上述問題,我們希望從根本解決運行效率過低的問題,而最顯而易見的方法就是在遊戲運作前先將人工智慧訓練完畢,也就是在遊戲開始時直接給予一套策略,令電腦無須再做額外的遊戲模擬。綜上所述,我們開始實作Tuple-Network、TD Learning及AlphaZero的相關架構,但礙於時間關係,模型尚未被訓練。
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及
提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式,
免費開源軟體可至LibreOffice下載安裝使用,或依貴慣用的軟體開啟文件。」