三角形可變動的外西瓦線之共點問題
2001 年 Larry Hoehn 提出了 △ABC 的三個旁接三角形的西瓦線之共點性質,近年的相關研究都是探討邊上作正方形或矩形而構造三個旁接三角形。本研究不限於直角,創新探討角度一般化情形。考慮以 △ABC 頂點為旋轉中心,將三邊分別旋轉實數 φ 後,構造出可變動的三個旁接三角形。我們發現可變動的三條外中線交於一點、三條外高交於一點、三條外中垂線交於一點。我們先探討前述三個動點的軌跡,發現著名的 Kiepert 雙曲線,本研究為 Kiepert 雙曲線的新構造法。接續研究任選兩點所構成的直線性質,有趣的是,外高交點與外中垂線交點連線恆通過重心;外高交點與外中線交點連線恆通過九點圓圓心,我們給出共線三點的有向距離比例常數。最後,再探討三個動點共線的充要條件。