全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

國中組

膜力奇蹟–以蛋殼膜粉吸附重金屬離子與色素之研究

蛋殼膜的主要成份是蛋白質,含有豐富的胺基酸,其結構上的特殊官能基胺基(─NH2 )和羧基(─COOH)對金屬離子具有螯合作用,而且難溶於水。實驗結果顯示蛋殼膜粉對於帶正電的金屬離子(包括H+離子)以及食用色素,皆能有良好的吸附效果。此外我們發現H+離子與金屬離子存在著競爭關係,在較酸的環境下,即使銅離子濃度比氫離子濃度大100倍時,蛋殼膜粉仍優先吸附氫離子。蛋殼膜粉對離子的螯合能力比較為H+>Cu2+>Co2+>Ni2+。以蛋殼膜粉螯合Cu2+離子而言,最小偵測極限可達10-4M。蛋殼膜粉螯合金屬離子與吸附色素的過程為一個可逆反應,利用較高濃度的酸性水溶液,使反應逆向進行達到再生,再生的蛋殼膜粉仍然具有螯合銅離子與吸附色素的能力。

甲若殼以結素重金屬汙染-甲殼素吸附重金屬水溶液

本實驗中採用自製的甲殼素吸附金屬離子,發現在0.04M、pH4、25℃、45分鐘時添加了戊二醛的甲殼素對銅離子有最好吸附效果。其中甲殼素在不同濃度的銅離子中,濃度越低對銅離子的吸附量會越少。而在添加戊二醛改質甲殼素以形成網絡型結構方面,隨著戊二醛添加量的增加,甲殼素對銅離子吸附量隨之增加。時間對銅離子吸附量的影響發現,GA2在10到40分時吸附最快速,約在45分時達平衡。在甲殼素克數對銅離子的吸附量影響發現,大約在0.8克時吸附可達平衡。甲殼素在不同pH對銅離子吸附量的影響方面在越偏酸性的環境下吸附效果最佳。

鐵銅電池之探討及改良

按理化課木 22 - 3 的伏打電池,鋅銅電池實驗,實驗步驟進行實驗所產生的電流很小,尚未達到 1mA ,看不出 〝 通電 〞 的效果,再加上學校廢棄的易開罐(鐵罐)隨手可得,因此希望能改進實驗,使得伏打電池更簡便,更持久,於是在老師指導下進行了下列研究探討。

潘朵拉的正鑲嵌圖塗色秘密

本研究探討正方形、正三角形、正六邊形正則鑲嵌格子,無論其是否被塗色,與其相鄰的鑲嵌格子最多僅允許一至數格被塗色的條件,其存在最多塗色格子的數量及存在塗色方式的問題。本研究利用塗色格子位於邊線角落、非角落的邊線、或鑲嵌內部的共用邊數差異、及與塗色格子總數間的限制條件,採用賦值法解析最大塗色格數的上界。接著,利用塗色建構符合解析上界的塗色方式,以數學歸納法推導最大塗色格數的通式,並求證其與解析上界的塗色數量相同,證得確實存在該最多塗色格子數量。研究推廣至n→∞時,各正則鑲嵌塗色面積比率的極限值均收斂至特定數值,且發現當外框邊線效應消失時,以特定週期(鑲嵌層數)累計最大塗色格子數均可表示成數列g(l)=f((l)-f(l-1), h(l+1)=g(l+1)-g(l)≡C2, l∈N, f(0)=C1的形式。

離子在電場中的運動

電場的分佈是研究電學的基礎,課本上並有多張「放草種子在絕緣液體內之電力場」照片,對於各種情況下之電場分佈均有極清楚的照片,然而我們數度以機油當做絕綠液,可是無法獲得預期的效果,所以我們數位同學攜手找尋更好的電力場顯示法,後來我們思考是否可利用離子的移動來顯示?於是著手實驗各種離子受電力場作用移動而留下的痕跡,以進一步瞭解電力場,經過三個多月利用課餘時間作了一些電場分佈及帶電離子移動方向及速度與電場的關係。我們覺得這方法可提供為以後高中物理教材研究及觀察電力場的實驗之一操作簡單,現象明顯,並可印證多種學理的解釋。

筒”機取巧--不用電池的手電筒

近日颱風頻繁,家家戶戶常停電,手電筒成了必須之品。有時找到了手電筒,卻忘了放電池,又要摸半天,加上電池放久了,又容易沒電,且電池的電能終將會用完,那時又該怎麼辦?有鑒於諸如此類的狀況,我們利用國中理化第三冊十二章與十四章裡,所學到的磁場改變可以使得線圈產生感應電流,在此我們利用整流器把感應出電流變為直流電,又由於磁鐵及線圈的運動速率不同,使得所產生感應電流值不均勻,磁鐵運動至線圈每一個地方感應出來的電流值不一樣,所以我們利用加上電容器將電能儲存再慢慢放電;在此電容有充電作用及兼具有濾波作用。再者我們使用發光二極體當成電光源,因此加上 1.5k 歐姆,1/2W 電阻及齊納二極體是穩壓作用,使負載工作電壓穩定,不使負載燒壞。另加上 2.2K 歐姆 1/2W 電阻是限流作用,保護發光二極體。於是我們做出了非常實用的不用電的手電筒,甚至做出了有趣的洋娃娃玩具,成功的收集並利用電磁感應所產生的電流成為一種不耗費資源的環保能源。

來電用「絲絲」---絲藻在微生物燃料電池之應用

在養殖池中絲藻的增長速度非常快,會影響魚苗的生長,造成漁民的困擾。若將其當作再生能源利用,不也是一種廢物利用的做法嗎?\r 本實驗利用絲藻培養的新菌種「YMJH 一號」,以自製微型雙槽式研究微生物燃料電池的產電效能。以8cm×8cm 半透膜取代價格而貴的質子交換膜、陽極置入台製生化棉及0.005M 葡萄糖當燃料,在陰極12mL/s 曝氣速率、陽極6 小時水力停留時間,在500Ω電阻下最大功率密為34.87 mW2/m2,超越參考文獻中最大功率密度。\r 在不同電極種類下,100cm2 碳織布當陽極、10cm×10cm 打洞碳串當陰極使內電阻大幅降低,因此得到最大電壓為0.63V 而最大功率密度提升至79.38 mW2/m2,超越歷屆科展作品的最大電壓0.09936V、最大功率密度1.9745 mW2/m2 ,甚至是參考文獻最大電壓0.416V、最大功率密度32.9 mW2/m2的2 倍產量。

沒殼怎麼辦?猶豫寄居蟹(Clibanarus virescens)換殼策略之研究

猶豫寄居蟹(Pagurus dubius)主要分佈在溫帶及熱帶地理海邊,是台灣北部常見的種類。本研究主要是為了探討猶豫寄居蟹(P. dubius)的換殼策略,我們主要以海邊環境的變化及猶豫寄居蟹(P. dubius)的體型來探討,探討這些變因是否影響猶豫寄居蟹(P. dubius)換殼的因素,結果顯示體型1.5公分到2公分的猶豫寄居蟹(P. dubius)換殼機率最高,且牠們多在水深、明亮、空殼數多的條件下換殼,猶豫寄居蟹大部分會選擇比自己體長大1.86倍殼長的螺旋狀貝殼或螺旋狀物品居住,尤其以稜結螺為牠們的最愛。了解猶豫寄居蟹(P. dubius)的換殼策略,可以以此作為參考,做保護猶豫寄居蟹(P. dubius)族群的措施。

洋菜活塞與氣體的P.V.n.T.及氧、呼出氣體、二氧化碳含量的探討

去年我們發現洋菜在理化實瞼上有許多妙用,經過研究後,所提出的報告,「洋菜的妙用」獲得全國科展佳作獎,一年來我們又陸續發現洋菜製成的活塞還可以有很多廣泛的用途,所以今年我們的作品是「洋菜活塞與氣體的P.V.n.T.及O2、呼出氣體、CO2 含量的探討」。

揭開催化劑的神秘面紗-由過氧化氫分解製氧反應談起

在本研究,我們設計了一套「可定量式排水集氣法實驗裝置」,並以標準氣體流量計校正,證明其操作簡便、精確性佳。同時,藉由過氧化氫(H2O2)製氧的實驗,對催化劑影響反應速率進行定量探討,確認二氧化錳(MnO2)和碘化鉀(KI)為過氧化氫分解反應之正催化劑,而苯甲酸(C6H5COOH)則為負催化劑。其次,進一步探討食品中殘留H2O2的問題,並討論常用烹調配料對H2O2分解的影響,結果發現味精、醬油、食鹽無明顯催化作用、白醋為負催化劑;而老薑、芹菜、青蔥、大蒜、辣椒等五種蔬菜類配料均為正催化劑,其中尤以老薑和芹菜之催化效果最佳。此外,我們也發現蔬菜類配料的主要催化作用是「酵素」,而非文獻中所認為的鐵類礦物質。