全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第64屆--民國113年

微型鋅銅電池

課本中的鋅銅電池,藥品用量大,鹽橋製作也較費時,製作完成後,又會面臨電流過小以及不穩定的問題,這種傳統鋅銅電池約能產生2mA左右的電流,並無法使毫安培計有明顯偏轉,但又會超過微安培計測量範圍。歷屆科展的改良方式,是提高藥品濃度,或將鹽橋以玻璃紙代替,又或是將硫酸銅硫酸鋅做成凝膠,這樣製作較費時且較不利於回收再利用。我們嘗試在歷屆科展資料中找尋影響電流的關鍵因素,再設計微型鋅銅電池原型。最後,我們製作出用量僅傳統鋅銅電池藥品用量 1/10,但電流提升數倍的微型鋅銅電池,能讓毫安培計偏轉更明顯、藥品能回收反覆利用多次電流不衰減、能驅動LED,能在低用量低濃度即能使微安培計良好運作,又便於探討各種變因影響的電池。

機率的陷阱——伯特蘭悖論

1889年,約瑟.伯特蘭(Joseph Bertrand)展示了以下問題:「圓內隨機一弦大於圓內接正三角形邊長機率為何?」並提出三種解法,而每一種解法都分別得到不同的答案。我們發現其他正多邊形也有類似情況,歸納出其中的規律,並且將伯特蘭的解法推廣為第四種,這種解法可以在範圍內任意產生無限多種機率。接著推廣到立體空間中探討,也同樣發生悖論,這些不一致的情況蓋提議敘述不清所致。

「颱」客強強滾

本研究採用聯合颱風警報中心(JTWC) 2011-2020年衛星觀測資料,探究西北太平洋颱風快速增強(Rapid Intensification, RI)現象。研究發現並非所有颱風都會經歷RI現象,秋季(9月-11月)颱風伴隨RI現象發展的比例較其他季節高。颱風最活躍的6至11月,強颱的生成與發生RI的現象具高度正相關。聖嬰現象發生期間,有更多強烈颱風的生成,發生RI現象的強烈颱風也相對較多。RI現象最主要出現於颱風的發展期,其次才是極盛期。最後,以天秤颱風、卡努颱風進行個案分析,發現RI期間出現颱風眼隨強度增強而愈來愈清晰並趨於正圓、螺旋雲雲帶與颱風中心對流雲系發展迅速、颱風結構也愈接近對稱等現象。

蟑螂跑跑跑-蟑螂步行模式探討與觸角擺動模式初探

本實驗以三種蟑螂(杜比亞、櫻桃、龍蝦)作為實驗樣本,共拍攝30段蟑螂 直線前行影片,發現蟑螂以賓士步行法為主要的步行模式。三種蟑螂在本實驗分析中,出現賓士步行法的百分比例達到61%以上。本實驗也發現發現體長越長的蟑螂,其出現賓士步行法的百分比例越高,且體長與賓士步行法百分比例呈現線性相關,相關係數為.92,為高度相關。在斷腳蟑螂的步行分析上,步伐擺動規律基本上以(35⮕24⮕16)的模式來移動,只是會隨著斷掉腿的不同而有不同的規律。若該蟑螂斷腿編號為1,他的行動規律便會變成(35⮕24⮕6)的重複,若斷腿編號為3,行動規律則會變成(5⮕24⮕16)的重複。在有無食物狀況下分析三種蟑螂的觸角擺動狀況,目前正在進行質化與量化分析中。初步觀察結果為沒食物吸引的蟑螂觸角擺動方式時,觸角總是朝前左右擺動且靜止時間長。後來觀察有食物的狀況下,三種蟑螂觸角擺動時間高達70%以上。

植酸的氧化還原之探討

本研究以植酸為研究標的,探討植酸的氧化還原反應.實驗利用過錳酸鉀作為氧化劑加入硫酸和植酸,使過錳酸鉀由暗紫色轉為無色。無色過錳酸鉀顯示植酸能在硫酸作用下發生氧化還原反應。這次實驗可分成三個部分,第一部份檢測植酸和過錳酸鉀發生氧化還原的反應條件;第二部分利用分光光度計測量反應中過錳酸鉀的吸光度,以其數值判斷反應時間,再以分光光度計測量固定時間內過錳酸鉀的變化量(透明度),藉此進一步探討植酸與過錳酸鉀和硫酸在不同情況下的反應情形;第三部分深入探討過錳酸鉀與植酸反應的中間產物與可能生成物為何。

一點一滴――以水滴撞擊液面的動態過程探討水滴斷裂之機制

本研究將水滴撞擊液面的動態過程分為三個階段:水滴撞擊液面形成水窪、水窪形成水柱以及水柱分裂為水滴,在此三個階段,我們皆找出了良好的量化關係。根據我們推導的公式可看出,水滴撞擊液面速度愈快則水窪則愈大,且水窪形狀皆相同。水窪愈大則會形成初速度較慢且較粗的水柱。在水柱分裂為水滴的機制探討中,我們發現分裂的水滴可分為三種,分別為噴射水滴、滯留水滴、凹陷水滴,其中噴射水滴僅在撞擊速度慢時出現,而滯留水滴與凹陷水滴涵蓋近所有撞擊速度。最終,我們找到了噴射水滴斷裂高的預測公式,故可利用撞擊水滴的物理性質,精準預測噴射水滴的出現與否,且與實驗數據極為相近。

「卡最電」---運用卡門渦街共振進行發電的研究

1.彈性體彈力係數在卡門渦街效應中會變化,代表受力相同下,形變量改變,利用卡門渦街共振發電有節能效果。 2.系統渦街頻率為0.76Hz,測量阻流體後方1倍球體直徑處頻率為0.86Hz,2倍直徑得f=0.79Hz,與理論計算相近,證明有卡門渦街效應存在。最佳的組合直徑4cm、弦切角度30度半球形阻流體,有風時k(彈性係數)=6.61N/m,無風時k=11.46N/m。在6.5cm的彈簧座上,放置射流完全發展階段,距離出風口縱向距離15cm橫向距離3cm(15cm/s)處,共振晃動軌跡為橢圓形。 3.阻流體模組在卡門渦街共振下頻率變小,共振效應有穩定阻流體運動穩定性。 4.卡門渦街發電裝置的發電功率為較課內實驗的發電功率穩定,其體積與質量都較輕巧化,有發展潛力。

廢熱!啟動!節能從廚房開始!

根據本研究問卷調查結果,顯示本學區內約有58%家庭藉由將水煮沸再放涼的模式來製造飲用水,因此從節能減碳的角度上,探討如何回收熱水降溫所釋放出的熱量將有助於環保。本研究運用熱水散失於環境中的廢熱來提高冷水煮沸前的溫度,以減少後續加熱所需能量。於實驗中發現縮小容器體積與熱管長短搭配,並在隔熱裝置及冷熱水鍋之間加上鋁箔罩效果最好,可在1小時內節省超過43%的能源!甚至只需15分鐘就可節能30%!最後,利用能源採集技術設計可自我供電的低功耗IoT使用者介面,實時監測水溫狀況,再透過機器學習方法,提供預估的熱交換等待時間的功能,最後將訊息以Wi-Fi傳至手機APP中顯示。

智能手語學習輔助遊戲

本研究透過擷取手勢關鍵點和臉部座標,開發了自動辨識手語程式。在持續的改良下,平均辨識率從68%進步至85.2%。以此基礎延伸發展,我們將”手語的意義、動作與情境故事性”互相結合,設計了三種類型的手語學習輔助遊戲("單詞情境遊戲"、"相對字詞比較遊戲"、"相似手勢比較遊戲")。80%以上的使用者認為我們研究的智能手語學習輔助遊戲,能輔助學生學習臺灣手語本土語言課程,能提高手語學習的動機與成效。 另外,我們也設計了”自動化生成程式 ”,讓有教學需求的老師或是自學需求的學生,可以針對需要練習的手語,快速地自動化設計出手語遊戲。讓手語學習者可自主複習手語動作;教育者也能夠適時輔導部分個案提升個案手語動作的精確度。

智伴共創學習動機

本研究設計一般聊天機器人與諮商聊天機器人,以提高學生的數學自我效能,藉此增進學習動機。 本研究採用準實驗設計,研究對象為國中、高中生共297位(137位男性、160位女性)。參與者經由隨機分配進入一般聊天機器人(實驗組A)、諮商聊天機器人(實驗組B)和無使用聊天機器人的控制組C。三組都接受數學自我效能量表的前測、後測,實驗組需填答聊天機器人滿意度量表。 研究結果顯示:就全體樣本而言,一般聊天機器人可顯著提升學生的數學自我效能;高中組樣本發現,一般聊天機器人和諮商聊天機器人都能顯著提高學生的數學自我效能。 未來研究方向包括:匯入更多心理諮商文獻且改善應答方式,應用於青少年心理健康上的提升。