全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第62屆--民國111年

無線主動式溫控外送箱

本專題製作主要以「控制簡便」、「即時顯示」、「快速製冷製熱皆可」為原則開發出的智慧外送保溫箱,而主要解決在於現今普及的外送服務,因某些不可控因素而導致外送延誤,讓食物到顧客手上變得不新鮮,同時也可解決食物保溫上的問題。

線上教學 -- 深度學習專注力分析

自2020年受到新冠肺炎疫情的影響,許多原有的生活、工作與學習型態都受到了影響。為了控制疫情,減少面對面接觸是其中一種方法,學習模式亦從實體轉變成線上。因學習都是面對鏡頭進行,老師很難掌握學生實際的學習狀況,也不易確認學習的品質。 沒有專注就沒有辨識、學習記憶。鄭朝明(2006)提到專注力與學習有密切關係,線上學習容易受到許多外在環境的誘惑導致專注力下降。本作品提出利用人工智慧中的深度學習,透過學生學習時的鏡頭畫面進行臉部特徵擷取,作為深度學習之分類器的輸入進行辨識,並將辨識出的狀態分析後得到結果。教師可利用分析出的結果進行教學模式的調整,以提升學生學習的狀態與品質。

左閃右躲,哪裡逃!

本文旨在探討街道上面對面即將碰撞的兩行人A和D,做左右閃躲的過程。 如圖(1),作(BC) ̅的中垂線交(AB) ̅於E1得L1 (左閃),連(E1C) ̅,再作(E1C) ̅的中垂線交(AC) ̅於E2得L2(右躲)依此規則繼續操作,得L1、L2…。但不是所有△都可以連續作出左右閃躲的中垂線,我們找出可以連續閃躲時∠B和∠C的關係,並預測左右閃躲次數上限。也針對當中垂線Ln恰巧通過A點時,n值及∠B和∠C的關係進行探討;接著擴充到△的每一邊同時各作一輪L1、L2…觀察三邊都能達到Ln的n值及當下的特殊幾何點。研究完中垂線後,將中垂線改成過(BC) ̅分點的垂線,並仿照中垂線的做法,探討∠B和∠C的範圍關係式。

運用機器學習和軟體模擬優化泵浦旋葉

本研究主要整合實驗測量、田口實驗與人工智慧機器學習等方法,發展優化泵浦旋葉技術。首先以3D列印開發多種相異外型族群與不同葉片數目共計82種設計,以實驗探討旋葉構造形狀與泵浦之流量、揚程及效率,進而找出效率較佳的旋葉並作為基底,過程中應用電腦輔助分析軟體進行旋葉內部流場與應力場分析驗證,搭配透明運轉泵浦觀察不同轉速下旋葉內部流體流動狀態,田口法研究結果發現由信躁比與均值分析結果顯示入口斜率為最重要的影響參數、其次分別為旋葉數與出口斜率,影響最小則是上蓋厚度,且優化設計旋葉T3C-10-2-4-4最佳。機器學習方面,經由多元線性回歸訓練模型預測出未知的旋葉效率(Y值),訓練完成後得到平均絕對誤差Mean Absolute Error (MAE)皆小於1.5。

「肽」強了—Q4-15a-1抗癌胜肽輔助化療藥物對胃癌的作用與其機制探討

胃癌是國人常見的癌症之一,常見的化學藥物治療常造成嚴重的抗藥性,而標靶藥物雖效果較好但價格昂貴,我們欲探討胜肽Q4-15a-1能否與化療藥物 5-FU ( 5-Fluorouracil ) 達到協同抑制癌細胞的效果,並找出 Q4-15a-1 的胞內作用機制,希冀未來可降低 5-FU 的使用量。本研究使用AGS ( Adenocarcinoma gastirc cell line ) 胃癌細胞株,由細胞存活率結果可知單獨給予Q4-15a-1 在 30.88 μM 可抑制細胞生長;單獨給予5-FU 則在 9.14 μM 能抑制細胞生長。而同時給藥時,達最佳抑制效果僅需12.04 μM Q4-15a-1 與 3.56 μM 5-FU 。在探討 Q4-15a-1 抑癌機制中, Annexin V-FITC/PI 雙染法及細胞週期實驗得知Q4-15a-1、5-FU和藥物組合可皆促使細胞走向凋亡;再以西方墨點法確認凋亡途徑,由凋亡調控蛋白表現量推測,Q4-15a-1 誘發外源性凋亡;藥物組合誘導的是內源性凋亡及 Parthanatos 途徑。

海蟲的棋盤遊戲

本研究主題是在n×n陣列中,甲乙雙方輪流填入三種海蟲的遊戲探討。我們得到下列結果: 一、探究海蟲形狀與數量,我們利用「頭部的連接方向」和「頭尾的連接方式」,找出所有的海蟲圖形,並利用六連塊檢驗,確認所有的海蟲個數共是71種。 二、將陣列邊長點數n分成6k-3、6k-2、6k-1、6k、6k+1、6k+2等6個類型討論,找出n×n陣列可擺放海蟲個數的最大值。 三、探討只使用一種海蟲排入陣列的遊戲玩法,得到結果如下: 1. 6×6陣列遊戲結果必是甲乙兩方都放3隻海蟲,雙方平手。 2. 7×7陣列遊戲最佳結果必是先手甲方4隻、乙方3隻,由甲方勝1隻。

無接觸式防疫電梯

本專題主要用於電梯內的防疫,其功能包含手勢感應器(APDS)及手機APP控制。感應來自手機APP或手勢感應器(APDS)的訊號後再傳送至Arduino判斷與控制,來進行開關門與上下樓。此電梯利用氣閥來達成開關門的動作,利用馬達正反轉達成上下樓,再由遮斷器定位樓層,在上下樓時及開關門時,LCD都會顯示當前所做的動作。本專題是為了減少接觸電梯按鈕時的病毒,來降低疫情傳播的風險。

白棘三列海膽管足的吸附脫離機制探討

管足為棘皮動物的特有構造。本實驗利用自製的實驗裝置,測得白棘三列海膽的管足在水中具有強大的吸附力,且該吸附力主要源自於黏性物質。在觀察管足吸附與脫離的過程中,我們發現管足在吸附時會朝向介質面做出擠壓動作,藉吸盤內部片狀的小骨關節產生形變,以釋放更多的黏性物質,也透過管足腳印的染色結果證實黏性物質的存在及分布。本研究歸納出白棘三列海膽吸附脫離的完整過程:黏性物質預先分布於吸盤表面及儲存於吸盤內部,當接觸介質面時,透過擠壓動作釋放大量黏性物質,並藉由去除黏性物質使管足快速脫離介質面。這種黏性物質可在水中作用,並且能夠被迅速移除,在仿生學上極具應用潛力。

謎之泡 - 探討母泡產生子泡的機制

想研究為什麼將附著在手上的泡泡往旁邊拉時會產生更小的泡泡。於是利用支撐架來模擬雙手,拉的速度則由砝碼的拉力來控制。 一開始先改變不同的拉力,發現拉力愈大,產生的子泡泡愈大。由高速攝影發現,要產生子泡泡前,母泡泡的曲率半徑開口會先從向外轉成向內,進而與中間段分離。而快速拉動的支撐架時,曲率半徑開口方向轉換的變化使中間段有較多空氣,形成較大的子泡泡。 較小的支撐架,所產生的子泡泡會比較大。原因是小支撐架的分離母泡泡會比較小,使中間段空氣量較多,所以形成的子泡泡也較大。 最後改變溶液的表面張力,發現表面張力愈大,母泡泡曲率半徑的變化越快,產生子泡的時間就會更短,因此子泡泡將隨表面張力變大而體積變小。

拋丟推我都不怕,我是「平底不倒翁」

本研究旨在探討平底不倒翁之可行性,以及影響平底不倒翁成功與否之關鍵因素。我們透過懸吊法找出物體的重心位置並設計實驗,實驗發現在容器內部不同位置加上一塊華司,能顯著改變整體的重心位置,其次影響平底不倒翁的關鍵是重心的位置及容器底部是否內縮,而重心的位置又與附加物重量、位置等息息相關,透過容器不同傾斜角度的實驗與槓桿原理的分析,我們發現重心越低越容易成功。此外平底不倒翁的成功條件有二,一是使用上緣大於下緣的容器或容器底部內縮,二是底部黏附的重物密度夠大或是也能內縮。平底不倒翁確實可行,且可以將其概念運用在生活中,例如改良交通錐、安全防撞桿、兒童餐具、玩具、直立式電風扇等。