錐尋格點-利用高階線性遞迴數列解有心錐線上的格子點之探討
在坐標平面上, 坐標均為整數的點稱為格子點,本文的研究是探討有心錐線(含圓、橢圓、雙曲線)上的格子點問題。 首先探討科學研習月刊中的一道數論問題:「你可以找到多少組正整數對 ,讓 的平方減5是 的倍數, 的平方減5是 的倍數?」,特別感興趣於滿足上述條件的生成下一組解,此解可由盧卡斯數列的相鄰奇數項觀察出來,於是我們嘗試推廣至一般齊次線性遞迴數列的情形。進一步探討生成下一組解的遞迴關係、建構有心錐線方程式、此方程式有解的數論性質及計數格子點的個數。若由上述方式推導橢圓,在判斷數論性質上有難度,最後我們利用二次剩餘及歐拉-費馬定理來克服橢圓上的格子點問題。