全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

高級中等學校組

論平行電板間肥皂泡之變形現象

觀察肥皂泡置於平行電板中時產生變形,本研究探討此現象並提出相關解釋。經由實驗發現肥皂泡在電場下的形狀是橢球的一部份;肥皂泡在施加電場前後的高度比與寬度比是兩電極板間電壓的二次曲線,且離心率與電壓成正比關係。透過觀察肥皂膜的光學性質、分析皂膜受力以推測其電學特性,確定系統之電荷與電位分布,進而提出理論模型計算系統能量,解釋平行電板間肥皂泡之變形現象。

憑水相鳳-積水鳳梨毛狀體與吸水路徑探討

本研究主要是觀察積水型鳳梨 (Neoregelia ampullacea) 葉子表面氣孔與毛狀體分布密度、氣孔開閉,還有根部及葉子維管束吸水的模式。結果發現此種積水型鳳梨的氣孔只分布在下表皮,主要在晚上開啟,然而白天氣孔也有相當比例是打開的,而葉子的毛狀體有兩種型態,分布在下表皮與基部的毛狀體數量不僅較多而且較大型。另外,根部雖然具輸導能力,但是內部出現空洞化,葉表的毛狀體具有輔助吸收水份的功能,水份主要由基部的毛狀體進入至維管束內,再由下而上因打開的氣孔產生蒸散作用的拉力。此外,我們也與另外兩種積水鳳梨(虎斑與火球)做功能性的比較。若能對毛狀體構造更加了解,將可應用於仿生生物學,生產保暖又吸汗的織布或收集水份的工具。

飲食對線蟲神經老化的影響及其分子機制

秀麗隱桿線蟲有透明體腔、月餘的生命週期,為研究老化的極佳模式生物,和E. coli OP50相比,Comamonas DA1877會加速線蟲生長並縮短壽命。本研究旨在探討DA1877飲食是否造成線蟲早衰。實驗中採用Pmec-7::mRFP線蟲比較不同飲食下感覺神經老化狀況,得知DA1877飲食使線蟲早衰。同時觀察擺尾速度以檢測線蟲老化趨勢,得知食用DA1877成蟲後相同天數的線蟲擺尾速度較低,顯示飲食差異影響線蟲老化及運動神經。同時使用aldicarb藥物探討線蟲癱瘓速率,確認運動神經也受飲食影響,並採用與氧化壓力相關的核心轉錄因子daf-16 基轉種Pdaf-16:DAF-16a/b::GFP,比較不同飲食下細胞核螢光表現量,確認 DA1877增加DAF-16在細胞核的表現量。未來希望觀察缺乏SAM合成酶之線蟲感覺神經型態與擺尾速度,了解DA1877飲食使線蟲早衰的路徑。

一「碳」究竟—溫室氣體與極地冰融

本實驗探討溫室氣體對極地冰融的影響,結果一:當溫室氣體受地表輻射溫度升高之實驗時,加熱光源宜選擇中紅外光區,可以避免其他波段干擾。結果二:溫室氣體分為CO2、H2O、CH4及N2O等氣體在中紅外光區皆有高的吸收率,故皆為溫室氣體。而同核物種如N2及O2,因在紅外光區沒有吸收波段,故不屬於溫室氣體。結果三:依據分析可發現全球溫度和CO2濃度都是呈現上升的趨勢,我們預測18年後CO2濃度即會由今年的新高408ppm上升到450ppm。結果四:在汽水模仿冰融之實驗中,亦驗證推論如冰層中富含有溫室氣體(CO2、CH4等),當冰層融化時確實會釋放出大量溫室氣體而造成溫室效應加劇之可能。結果五:CO2捕獲技術以化學吸附確實可成功吸附空氣中的CO2。

平行玻璃板間的愛情故事──探討兩夾水的平行玻璃板拉開之力

兩玻璃板間夾水時,兩玻璃板會不易拉開。我們以圓形玻璃板為實驗工具,於中間夾水,以力感應器測量拉開兩片玻璃板所需之力。此實驗模型是架構在「液橋」理論上,根據此理論,分開兩玻璃板的力和玻璃板及所夾液體的壓力差成正比,即可由Young-Laplace equation推得:△p=2 γ/δ。 實驗結果如下:當玻璃板面積大小固定,水量愈少,兩片玻璃板拉開所需的力就愈大。當水量相同時,圓形玻璃板面積愈大,兩片玻璃板分開所需的力就愈大。玻璃板大小相同,且所夾液體體積相同時,玻璃板間的液體表面張力係數愈大,兩片玻璃板分開所需的力就愈大。當板面積和板間所夾的水量相同時,分開兩玻璃板所需的力會大於分開兩壓克力板所需的力。

以衰減瞬逝全反射U型光纖感測器應用於過敏偵測之研究

本研究研發一U型光纖生物感測器。進行偵測時,首先將抗原修飾於光纖表面上,再將光纖先後浸泡於模擬樣品及二級抗體(二抗)。隨後,把U型光纖鎖入反應槽中並移至光學平台上導入雷射。最後,在反應槽中通入奈米金粒子溶液,奈米金粒子會與二抗接合,從而附著於光纖表面上,在光纖表面上形成抗原偵測目標二抗奈米金粒子之結構。奈米金粒子的附著改變溶液之折射率,同時也吸收雷射,使訊號的改變更加劇烈,讓此設計得以偵測小型生物分子。 本感測器與時間相關,能以動力學模型計算生物分子接合之解離常數,以低成本、快速、簡易的操作進行抗體篩檢等生物小分子檢驗。同時亦有發展為波導平台,具有模組化、大量檢測的潛力。

斑斑可考—斑葉植物與環境因子

本研究藉由調控各項環境因子,歸納斑葉植物與環境因子間的交互作用,進而比較不同成因、屬性的斑葉植物應變相同環境因子的策略差異。研究顯示,光限制、非光限制均會讓化學性斑葉植物啟動自體調節,且在相同控制變因項中,葉綠素濃度變化量與斑紋面積比例之增減多成負相關。越高的溫度、光合有效輻射值和灌溉源pH值,以及過多藍光,會使葉綠素濃度的變化量下降;且每日八小時的光照,相對而言是最不利於斑紋成長的光期。我們也比較了面對低光環境時,兩種成因不同的斑葉植物。黃金葛與銀后粗肋草各葉區的葉綠素濃度變化,化學性斑葉──黃金葛在低光環境的葉綠素濃度變化量較正常情況為低;物理性斑葉──粗肋草則完全相反。

「球」好撞撞—球體撞擊平面移動及滾動之探討

我們發現了球撞到平面後有回彈的現象,我們設計了幾個實驗來了解並探討這個現象。本實驗主要探討當球體水平撞擊各個垂直平面之後所損耗的能量、球後續的運動狀態以及兩者之間的關係。我們觀察到:碰撞損耗量與碰撞面材質有關,而碰撞動能損耗率且後續運動狀態與入射速度、球與地面的摩擦係數......有關,而實驗可看出,當球體撞擊摩擦力越小,且碰撞損耗能量越大的平面,越容易造成球的回彈現象。

自製Arduino比色計

本研究利用單晶片微控制器Arduino、色彩感測器 TCS3200、散光型白光LED、電阻、電容、電晶體、筆記型電腦等器材製作出一簡易的比色計。先透過限流電阻及補償電容的更換交叉測試,尋找到系統所能提供最穩定光源的組合,然後利用一些已知濃度溶液的紅色、綠色、藍色、強度偵測值,用多元多項式迴歸分析法尋找出該溶液的最佳濃度估測函數,以後只要測得未知濃度溶液的偵測值,即可以此估測函數計算出該溶液的濃度。經由硫酸銅及硫氫鐵離子等溶液的實際測試,平均的估測誤差分別為2.75%及3.77%,可見我們自製的比色計確實精確有效。

圓周上跳躍回歸問題之研究

圓周上相異n個點,將圓周分割成n段弧,每次每個點沿逆時針方向變換成與下一點所成弧之中點,若某點經m次變換後回到初始點,則m的最小值以及m的所有可能值為何?我們發現,m的最小值為n+2。更進一步發現,m的充要條件為m≧n+2且m≠kn-1, kn, kn+1,其中k為正奇數。接著,我們將問題一般化,圓周上相異n個點,沿逆時針方向變換成與下一點所成弧之p:q處,若某點經m次變換後回到初始點,則m的最小值以及m的所有可能值為何?同時,我們也針對n個點具特殊初始位置座標來研究其回歸性質。