熱門關鍵字: the king 水果 豆漿 電腦 䰾
熱門關鍵字:
the king 水果 豆漿 電腦 䰾
全國中小學科展
依全國中小學科展屆次查詢
依組別查詢
依參展學科領域查詢
依相關評語查詢
依得獎情形查詢
本作品主要研究一種作圖工具「cyclos」,其規則如下:在平面上,可以以兩點距離為直徑作過此兩點的圓、以不共線三點作圓或在圓上標點。我們盡量避免了使用解析的方法。我們使用了這個工具證明了原題,並進一步作出兩點之中點、三點作三角形之五心以及其他的相關結構的作法。且利用精準繪出長度的方式,導出a¯AB,aϵ{α0+∑∞i=1αi√(i+1) |α0、αiϵQ,αi≠0 for finitely many} 並給出詳細證明。
本研究成功以不同化學方法自製磁性奈米粒子,並利用水熱法(Solvothermal)合成可見光光觸媒碘氧化鉍(Bi4O5I2),再以不同比例複合出具磁性的光觸媒,藉由光降解結晶紫(Crystal Violet)染料實驗探討分解染料效率最佳之複合樣本,其最佳樣本為Bi4O5I2 -Fe3O4-90 %,反應速率常數達0.1118 h-1,並運用一系列儀器檢測其特性並探討其與光催化效率之關聯性。此外,針對觸媒在生活中的應用性探討,在生活不同水質、極端pH值或是高濃度之有機汙染物均仍保持良好的降解效率,並以Arduino開發板搭配各項組件模擬小型淨水場,以達到自動化降解有機汙染物。另外,利用自製紫外光照光裝置模擬捕捉CO2之光催化反應,並使用Arduino開發板之氣體偵測器確認生成化石燃料作為未來展望目標。
機器學習和精準醫療是目前醫學界的熱門話題。機器學習在醫療領域的應用越來越普及,可幫助臨床更快速及精準診斷疾病,並提供個人化治療方案。例如,通過訓練大量醫學影像數據,建立深度學習模型,可用於腫瘤的自動辨識與分類。通過醫療資料大數據分析,可以為臨床提供及時的疾病預測和預防建議。然而,如何讓臨床資料結合機器學習建立模型預測,是很重要的議題。本研究使用臺北醫學大學數據處蒐集衛生福利部雙和醫院的大腸直腸癌與大腸炎病患三年的臨床資料,結合機器學習進行模型的建立與預測。經處理數據的缺失值、特徵的排序與選取及向前特徵選取法來訓練與驗證模型,找出分辨大腸直腸癌和大腸炎的最佳檢驗項目組合及效能,以預測大腸直腸癌。
陽光晒到皮膚,人體感覺到刺痛來避免過強紫外線。但為何感覺到刺痛呢?過去對光的生體受器著重於眼睛錐及桿狀細胞(Opsin 1/2),但它們在背根神經元 (DRG,神經末端主體細胞)的表現並不多。TRP channels表現在皮膚及神經。TRPV1是痛覺受器,引起鈣離子通透,Dr. Julius因它得到2021諾貝爾獎。TRPV1/A1受溫度、酸度等活化,但DRG的TRPV1/A1,是否會因紫外線(UVB)照射而影響,並導致鈣通透並不了解。我以不同強度UVB照射人類角質細胞或大鼠DRG,以螢光顯微鏡及流氏細胞儀測量TRP蛋白質表現,以實時影像來作動態鈣離子分析。結果顯示UVB增加DRG的TPRA1/V1表現。且UVB顯著增加角質細胞的TRPA1/V1表現,有劑量相關效後,惟UVB照射對鈣通透影響不大。結論是,UVB照射增加角質細胞及DRG的TRPA1/V1表現,可能與光照引起之麻痛有關。
擴展顯微鏡技術是以高分子化學與物理化學原理放大生物樣品的體積,相對地提高光學顯微鏡解析度至奈米等級。目前所使用的方法,無法有效標定細胞膜、胞器膜與脂質,且採用受質專一性低的蛋白酶K,易導致螢光訊號流失。為改善上述缺點,本研究先用酪氨醯胺訊號放大技術增加螢光強度,再用受質專一性高的胰蛋白酶以減少螢光訊號流失。因新方法使用酪氨醯胺和胰蛋白酶,簡稱為TT-ExM。實驗結果顯示此方法可更清楚標定細胞内多種生物大分子,如蛋白質及脂質,也適用於DNA染色。利用共軛焦顯微鏡即可進行超高解析度觀察,含各種微細的胞器、脂膜、和脂球結構,及染色體與粒線體DNA。本研究論文已投稿專業期刊審查。
近年發現,以腫瘤本身或分泌物作為藥物載體時,具有高度生物相容性、增強藥物遞送至特定細胞趨向性等優點。本實驗主旨在於研發腫瘤細胞膜分泌特性的奈米囊泡,以包覆目標物加強癌症治療效果。因前期研究發現:蝦紅素具有極高抗氧化及抗腫瘤性,故選擇蝦紅素作為抗癌藥物。蝦紅素奈米囊泡載體的製程方式是以黑色素癌及蝦紅素經適當比例混合,透過擠壓法,再去除癌細胞遺傳物質及發炎因子。在成果方面:蝦紅素奈米囊泡與黑色素癌細胞共同培養後證實,蝦紅素奈米囊泡抑制黑色素癌細胞生長及轉移的能力明顯優於等量蝦紅素,且對於人體正常細胞無顯著傷害性,顯示囊泡具有選擇性運送的傾向。我們的科展說明了蝦紅素奈米囊泡有成為抗癌藥物的潛力。
管足為棘皮動物的特有構造。本實驗利用自製的實驗裝置,測得白棘三列海膽的管足在水中具有強大的吸附力,且該吸附力主要源自於黏性物質。在觀察管足吸附與脫離的過程中,我們發現管足在吸附時會朝向介質面做出擠壓動作,藉吸盤內部片狀的小骨關節產生形變,以釋放更多的黏性物質,也透過管足腳印的染色結果證實黏性物質的存在及分布。本研究歸納出白棘三列海膽吸附脫離的完整過程:黏性物質預先分布於吸盤表面及儲存於吸盤內部,當接觸介質面時,透過擠壓動作釋放大量黏性物質,並藉由去除黏性物質使管足快速脫離介質面。這種黏性物質可在水中作用,並且能夠被迅速移除,在仿生學上極具應用潛力。
本實驗利用椰子殼、甘蔗渣和茶葉渣等廢棄物,高溫鍛燒製成不同碳源。與傳統活性碳相比,這些碳源具有更多的表面官能基和中型孔洞,是超級電容的理想材料。我們在製造超級電容時,以氮摻雜的活性碳和特殊膠黏合,並添加不同種類和濃度的電解質(如H2SO4、KI、KNO3、KOH)進行實驗,測試其有充電和無充電狀態下的電容值變化。我們成功找出最佳超級電容製造條件,即椰子殼鍛燒於600℃、以H2SO4作為電解質,其充電後的最高電容值達200mF/cm2,且在7天內保持穩定,未出現衰退現象。透過CV圖可證實,此碳材的反應是完全可逆的,非常符合超級電容的性質。這些廢棄物的轉化為高功能性、高附加價值的優秀電子產品,不僅輕巧且便於攜帶,更具有高穩定性,完全符合綠色化學的精神。
台灣手搖飲料從 1990 年代發展,至今已超過 30 年。2010 年代更由台灣流行至東亞、歐洲、美國及中東各國。 在這飲料店滿街都是的時代,幾乎人人都喝過飲料,飲料剛出爐的時候,為了第一時間讓飲料降溫且快速交到客人手中,通常大多數的飲店家都會加入冰塊。但有些不肖業者會為了減少成本而使用沒有經過消毒的不衛生冰塊,我們覺得如果在飲品裡加入這些來路不明的冰塊會不衛生,而冷凍製冰機所製造出來的冰塊雖然衛生,可是沒有達到完全節能減碳的效果,而受到溫度的影響在杯中融化的冰塊,融於飲品中的冰塊會影響飲品的口感且越喝越淡,為了避免這些問題,我們測試了多種的研究方法,最後選擇用大氣壓力瞬間洩壓產生壓差達到瞬間降溫的效果。
我們使用橡膠氣球膜套在塑膠杯口製作鼓,大小不同的金屬球充當鼓槌來進行實驗,記錄聲音以Audacity、Python-FFT及Python-STFT等軟體及分析演算法處理,探究聲音的組成頻率、振動模式及影響聲音頻率、強度的變因。成功找到金屬球撞擊橡膠膜聲音的基頻及振動模式組成。我們發現:金屬球落點愈接近中央,基頻強度愈強;遠離中央,則能引發較高頻率的震動模式。金屬球直徑和基頻強度雖無明顯相關,在基頻和(1,1) mode之間卻可看到一明顯波形,且此波形強度隨著金屬球直徑增加而增加;中等尺寸的金屬球撞擊膜中央特別能引發以落點為腹點的震動模式。此外,落下高度愈大,則基頻強度愈大;而落下高度增加並不會引發較高頻率的震動模式。