現在幾「點」了—探討多角數、多面體數之通式
本作品主要是探討多角數(或多邊形數)的一般式及關係式,並將其從平面推廣至立體。在本作品中,本組先以幾何的方式依序定義了三角數、四角數以及五角數並分別介紹了它們的一般式;接著,本組定義了k角數(k=3,4,5,...)並求得第n個k角數的一般式;然後,透過觀察四種k角數(k=3,4,5,...)的數列,我們得到並證明了一些有趣的關係式,如:連續兩項三角數的和為一個四角數等;而這些關係式除了可以透過k角數的一般式獲得驗證(即代數證明),我們也提供了幾何證明。最後,本組將平面上的 角數以不同的方式推廣至立體的多面體數,即第一型多面體數、第二型多面體數及多角錐數,並分別求得它們的一般式及相關性質,這個過程也讓本組意外地接觸了「正多面體」及「錐體」。