全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第一名

避債蛾的防護衣—探討幼蟲建造蓑巢的防禦行為及蓑巢對卵、幼蟲、蛹、成蟲的防護研究

本研究探討避債蛾(Eumeta japonica(Heylaerts)) 幼蟲做蓑巢進行防禦與蓑巢對成長各階段的防護。結果一濕度達80%以上與受到重壓因素,幼蟲會脫離蓑巢,離巢後能重做3~10個新蓑巢,幼蟲體重平均是巢重2.348倍、蓑巢長平均是幼蟲長的1.542倍,可使在內幼蟲獲得保護。結果二幼蟲以12.5±4.3gw拉力封住巢口,阻擋天敵入侵;排出軟便混體液含少許鹼性物,對螞蟻有忌避效果;當天敵入侵,體長可縮小0.92±0.23cm,可增加巢內移動或逃避的空間。結果三初齡幼蟲做蓑巢生存率為26%,塗抹體液後升到88%。結果四結蛹絲束能承受589.3±63.5g,保護蛹體安全蛻變到成蟲。

攻角對水漂跳動行為的力學分析

此研究是以實驗方式,驗證理論模擬中指出水漂在不同入水模式下,攻角為20度時皆可產生最佳的彈跳效果。因此我以壓克力板作為模擬水漂的模型,設計了以下四組操作變因,分別是入水攻角、水的流速、水漂邊界形狀以及不同粗糙程度的接觸面,透過Tracker分析壓克力板的質心彈跳高度及運動軌跡,再利用Excel、SciDAVis分析數據,找出其中的運動相關性。最後透過座標轉換,可以利用這些實驗來分析打水漂的運動行為,成功發現攻角在20度時有最佳的彈跳效果,並以此結論來優化打水漂的運動行為。

怪稻棘得—利用CRISPR-Cas9探討水稻癒傷組織生產疫苗次單位蛋白的潛力

本研究以水稻細胞生產新冠病毒(SARS-CoV-2)的棘蛋白(Spike protein),證明植物表現系統生產疫苗次單位蛋白的潛力。病毒棘蛋白可與人類細胞表面的血管收縮素轉化酶2(ACE2 )結合進而感染宿主細胞,因此重組棘蛋白可發展為次單位疫苗。我們將棘蛋白的受體結合結構域(Receptor Binding Domain; RBD)基因序列,經過水稻密碼子最佳化(Rice codon Optimized)後藉由專一性基因編輯技術CRISPR-Cas9轉殖進入植物水稻基因組α-澱粉酶(α-Amylase)序列中的第一段內含子(Intron 1),使RBD能與α-Amylase共表現並分泌至細胞外。再利用水稻MYBS2缺陷株特性,使轉RBD基因癒傷組織在糖缺乏誘導(Sugar starvation)下大量表現並分泌RBD蛋白至培養基中,最終藉快篩檢驗RBD是否被正確表現且具有抗原性,進而證明以植物細胞大量生產可供作疫苗來源RBD蛋白的潛力。

「均濕」的妙計–等壓出水等量灌溉裝置

本研究主要探討在同一條灌溉管線上,不同情況下各孔洞的出水量、管線前中後水壓的情形。為了要準確測量水壓,我們自製【微量水壓計】,解決外購水壓計刻度太大的問題。 研究發現,造成管線前後端出水量有很大差異的原因:j孔洞過多;k管線向上傾斜; l管線轉彎,它們的共同點就是:管線水壓前大後小。 因此「水壓」是解決問題的關鍵!我們利用針筒、彈簧設計了【孔洞等量出水裝置】,運作方式為:開水à累積水壓同時推開活塞à各孔洞同時出水à關水à水壓降低à彈簧推回活塞止水。 管線裝上等量出水裝置後,出水量的差異有效降低了:j孔洞過多61.5%à15.3%;k管線向上傾斜85.9%à15.7%;l管線轉彎98.9%à16.3%,最後也實際運用在蔬菜盆栽灌溉上,希望為省水盡一份心力!

二氧化碳高選擇性轉化生成合成氣之碳中和工程

近年來「碳中和」是全人類追求的目標,本研究利用非貴金屬(鐵、鈷、鎳)離子形成前驅物為2-甲基咪唑配體的沸石咪唑骨架和前驅物為雙氰胺、葡萄糖反應物的類石墨相氮化碳,再鍛燒生成可導電的催化劑,將上述兩系列的催化劑分別搭配使用氣液分隔的氣體擴散電極進行電解還原CO2,再由氣相層析儀分析產物並計算法拉第效率。目前合成出的鎳金屬類石墨相氮化碳催化劑(Ni SACs@NC)最佳,在電位-0.52V時,高選擇性生成CO,其法拉第效率高達99%,而目前已有成熟工業製程能將CO轉成合成氣,再製造許多具經濟價值的有機產物,所以我們開發的新環境工程,找到一條碳循環的新路徑,有助於加速達成「碳中和」,為人類永續發展做貢獻。

探討不同型態的海底峽谷對底棲動物群聚結構的影響

深海複雜多變的環境因子塑造了多樣的生態棲地,海底峽谷便是其中之一。全球 9000 個海底峽谷涵蓋了大陸斜坡總面積的 11.2% (Harris et al., 2014),其中有 6 個峽谷分佈在臺灣西南海域。由於海底峽谷型態多樣、地理特性各異,本研究結合作者出海採得的樣本與國內海洋研究所的採樣資料,對西南海域高屏與枋寮峽谷的底棲動物群聚結構進行探究。 本研究應用生態統計分析兩峽谷與大陸斜坡的環境與生物群聚差異,發現除了海底峽谷環境有別於周遭斜坡外,兩型態不同的海底峽谷亦具有顯著的環境與生物群聚差異。食物量與環境擾動強度對兩峽谷間的生物群聚差異貢獻最大,其對應的環境因子(有機碳含量與透光度)有潛力作為未來區分具有不同生態結構的峽谷的主要依據。

鑑色~藍染動力進行式

傳統藍染,染個深藍的布,要反覆浸染洗個二、三十次才行,而每一次的洗滌,都是藍水對環境的污染! 我們設計的鑑色儀,光敏電阻吸光儀使各色光照射比色管溶液,讓光敏電阻感光後,測量串接的電阻分電壓大小,可製作檢量線定量染液濃度;染布鑑色儀則是以GY-33顏色感測器校正後,測出同區塊面積的色布RGB值,再以線上顏色代碼轉換工具,轉換成HSB 值來分析染布顏色。 我們創新研究出藍染水車的動力機構,不僅可比較出不同水位、負載物的氧化還原轉速,也成功的加入順逆轉軸之動力輪替,解決長巾藍染不易的問題。 非接觸式的光遮斷感測器精準量測水車運轉時間、簡單比較增加風速或溫度可加速氧化之定色等,讓精準快速的藍染文化成為可能。

「梅」來演趣-探討台灣梅雨季之大氣流型演變與模擬

為了解台灣地區梅雨季的氣候特徵,本研究分析2009~2021年五、六月之降雨、風場及大氣環境。顯著降雨方面,東北部全年有雨,西南部則是五月開始才進入雨季。五至六月,台灣顯著降雨區域逐漸南移,為了解此時期大氣環境演變,我們分析「SSL東亞衛星地面天氣圖+風場」,共歸納出六種流型,分別為A北風、B東風、C南風、D北風南下、E低壓帶及F西風流型。我們發現,南風流型入夏後成為主流,且流型變化有趨勢性,在整合降雨資料發現,迎風面影響降雨甚鉅。接著,我們嘗試在實驗室模擬流型,我們以不同濃度海藻酸鈉溶液進行垂直及水平模擬,搭配磁石攪拌器模擬不同流向的流體擦撞,並加入障礙物,可模擬出與本研究相符的幾種流型。

解固奇招 – 動力水流解凍之分析與探討

現代人工作忙碌,常忘記將冷凍食材提早退冰,為了加快肉品解凍速度及節省備餐時間,研究動力水流解凍法的分析比較。 研究中製作標準化真空冰袋模擬肉品解凍,在不同馬達位置與水量多寡的流場分析,發現5升水量,馬達不同位置及不同起始水溫,起始水溫越高,解凍速度越快,雙馬達5+6號位置雖然速度較快一點,但基於會多占空間並較耗能,後續選用次佳效能的單馬達6號位置搭配節水的3升水量。恆溫控制對解凍時間有幫助,在起始水溫20度時解凍效率提升最多。 運用力學原理自製肉品軟硬度測定儀,判斷肉品解凍完成,具客觀性。研究找出用較高功率的加熱棒做3升水,馬達6號位置的20度恆溫動力水流解凍肉品有良好成效,可避免微波爐外熟內生的狀況。

奈米氧化鐵銅複合體應用於腫瘤協同治療

本研究結合奈米技術及生物醫學,創新以牛血清蛋白為載體,以一步法合成全新CuxFe3-xO4@BSA-IR780(CFO@BSA-IR780)多功奈米複合材料。材料鑑定由TEM、UV-Vis等儀器進行組成及性質分析。 材料中BSA賦予其優異水溶性;鐵離子有益在腫瘤觸發內源性H2O2產生活性極高的氫氧自由基,進行化學動力治療(CDT)。且光敏劑(IR780)讓材料呈紅色螢光,在近紅外光照射兼具光熱(PTT)與光動力治療(PDT)特性。 然而腫瘤內源性穀胱甘肽(GSH)過量會消除自由基,限制CDT/PDT效果。因此材料摻雜銅離子,藉氧化數變化增強療效。 後續更將CFO@BSA-IR780實際運用於细胞測試、螢光顯影與MRI檢測,確認低毒性、治療效果佳,並率先結合兩種診斷。成功發展具CDT、PDT、PTT及腫瘤顯影之多功奈米複合材料,以多種方式提升效率並降低傷害,提供醫學新興之藥物材料。