三催四請-從畢氏定理到N元畢氏數
符合畢氏定理X12+X22=X32的正整數解(X1,X2,X3)我們稱為三元畢氏數;符合N元不定方程式X12+X22+⋯+Xn-12=Xn2的正整數解(X1,X2,⋯,Xn-1,Xn)被稱為N元畢氏數。本研究更正陳揚叡同學在台灣2008國際科展中對N元不定方程式X12+X22+⋯+Xn-12=Xn2所提出的N元畢氏數一般解,並利用對圓點方陣的降階分奇偶數組加以探討,其中,奇數組是在(M+1)階方陣中透過一次降一階來探討三元畢氏數中X1=2k+1的情況,而偶數組是在(M+2)階方陣中透過一次降二階來探討三元畢氏數中X1=2k+2的情況。在獲得初步的成果後,又藉著直角三角形的擴充依遞迴定義的方式來進一步來探討N元畢氏數。最後,我得到N元畢氏數(X1,X2,⋯,Xm,⋯,Xn-1,Xn)的關係式(表一)。