全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

化學科

生物炭電容應用於去離子淡化技術

海水淡化是未來重要課題。本研究選擇易取得的生物炭源來製成生物炭,實驗發現鳳梨皮所製成的炭作為電容電極吸附水中氯化鈉具有發展潛力。 透過簡易比較吸附染料能力、吸附級數圖形等來選擇及決定生物炭的合成條件,實驗製作炭電極並以自製淡化裝置來吸附海水中的食鹽,同時以偵測氯離子變化的方式來定量單位時間每克炭電極的氯化鈉吸附量。實驗利用簡易電表探討了鹽水濃度與施加電壓對吸附過程時所造成的電解影響,另一方面,致力於優化文獻中偵測水中氯離子濃度的方法學並應用於本研究中。 實驗發現:未處理之鳳梨炭、酸洗處理合成之雞骨、龍蝦及椰子炭吸附氯化鈉具有良好的潛力,在適當的通電條件下,每克生物炭材之炭電容可吸附0.1~0.4克的氯化鈉。

3D紙片離心機在混合物分離的應用

準備科展題目時,搜尋到紙片離心機,該設備利用旋轉紙張圓盤達到高速的分離效果,以此裝置協助非洲疾病盛行地區進行血液離心及分析。 以紙片離心機為主題,實驗設計探討紙張材質,尺寸及重量;線的材質及長度;孔的數量及距離,採取不同方式組合測量紙張圓盤轉速,實驗結果以西卡紙為材質,半徑4或5公分,重量約10.0公克,孔的數量為2或3孔,孔距1.0公分,轉速較高效果較好。 西卡紙裁剪後規格無法一致,決定採3D列印製作出圓盤,以手動方式轉動毛細管吸入之不同澱粉或鴨趾草混合液,進行離心分離及分析。 實驗結果顯示,3D列印圓盤高速轉動後可將混合液中固相與液相分離,未來希望可以比較3D列印圓盤結合毛細管,在分析化學上進行更廣泛的應用。

設計與合成活性螢光探針應用於硫化氫之偵測

本研究設計出一款新型偵測硫化氫之螢光探針,螢光主結構選用BTIC,以疊氮基偵測硫化氫,利用側鏈將探針帶入粒線體。本實驗已合成出BTIC-N3和BTIC-N3-2,並透過NMR氫譜確認獲得目標產物。利用UV燈及螢光光譜儀證實兩款探針對於硫化氫的偵測能力並且兩款探針在10分鐘內皆可顯現出最高螢光強度,且BTIC-N3-2具較佳的螢光效果。此外,在選擇性測試中,加入硫化氫的探針產生之最高螢光強度約為其他試劑的9倍,確認了探針對硫化氫的高度選擇性。最後,我們預計將探針實際進行生物顯影,做多個結構顯影的比對。希望此款螢光探針除硫化氫偵測外,還能夠進行生物機制探討或疾病細胞篩選的應用。

華麗的轉身---紅龍果用於重金屬離子的偵測並轉換成螢光碳量子點

分別從紅龍果果肉和果皮提取甜菜紅素,可見光吸收光譜λmax=538 nm,可以與銅離子配位,從紫紅色變粉紅色。它對銅離子具有高度選擇性,偵測極限達1ppm。另外將紅龍果汁用來製備碳量子點,最佳合成條件是紅龍果汁稀釋成1/2,以180℃水熱法反應2小時,離心、透析純化,得到粒徑1-10nm的碳量子點。在紫外光-可見光吸收光譜λmax=285 nm,為碳量子點特有之共軛C=C電子躍遷。碳量子點在紫外燈的照射下會發出藍色的螢光,螢光儀測得放射光譜λmax=455 nm。以手機光譜儀結合樂高積木組成自製螢光光譜儀,發現在pH=2.5環境,稀釋倍率為1/1000時螢光表現最佳。當與銅離子接觸時,碳量子點的螢光會被淬滅。碳量子點螢光為無毒、低成本,可應用於生物、醫學之奈米材料。

皇宮聚膠綠電池

翠綠的皇宮菜葉所含葉綠素可以拿來發電,這引起我們興趣。本研究自行栽種皇宮菜,以它為自製綠電池的材料,且降低葉片選取上所形成誤差。首先,以伏打電池形式,嘗試找出有最佳發電效果的葉綠素萃取液,萃取方式上將葉子撕成1/2,乾燥後浸泡50%酒精,在暗箱中萃取出葉綠素;葉子則選擇光照足、成熟、綠色、無蟲害的來進行萃取;將葉綠素萃取液配製成75%,靜置後可以提升發電效益。研究最後發展自製出皇宮葉綠素電池和皇宮葉綠素果膠電池,各電池形式都可以讓LED燈發亮。自製葉綠素果膠具有成膜性、吸附性、溶解性和降光解等特性,讓葉綠素果膠膜比較好攜帶,延長葉綠素保存時間,避免被光解破壞,加水就能發電,增加電池應用性,和提高發電效益。

「銅」的奧妙-各項變因對電鍍銅的影響

本研究分為兩大部分進行電鍍銅的變因研究。第一部分的操縱變因為改變電鍍銅的基本實驗條件,發現電極距離越近、電壓越大、電鍍時間加長會使鍍上的銅越多但是容易產生黑色氧化銅,而改變電解液硫酸銅的濃度發現10%的硫酸銅可鍍上的銅最多,濃度降低或增加並不會增加鍍上的銅。第二部分主要是研究添加劑對電鍍銅的影響,除了將鍍上的銅秤重外,另外自行研發以簡單的『膠帶撕黏法』想要了解鍍銅的附著力。實驗發現添加氯化鈉與鹽酸會使鍍銅的附著力提升,較不易從被鍍物上脫落,添加氫氧化鈉會使電解液產生氫氧化銅的沉澱而阻礙電鍍銅的進行,添加低濃度硫酸則會鍍上較具有光澤品質較佳的銅。

吸「金」「膜」法

許多文獻中提到,交聯作用後的海藻酸鈉薄膜具有吸附重金屬的效果,本研究探討海藻酸鈉薄膜在不同時間、不同溫度、不同磁場下對鎳、鐵、銅離子的吸附效能。研究結果發現,海藻酸鈉對不同金屬離子之吸附效果整體而言為鐵>鎳>銅;溫度上升使海藻酸鈉對鎳、鐵、銅離子的吸附率更快達成平衡,且使達動態平衡後的吸附率震盪幅度更大,此外,鎳、鐵、銅離子在45℃的環境中的吸附效果最佳;磁場強度亦會影響海藻酸鈉對鎳、鐵離子之吸附效果,銅離子則無明顯差異。

二硫化合物交聯核酸在癌症藥物的應用

化療為癌症主要的治療方式,對正常細胞常造成副作用。為了讓化療藥對癌細胞具選擇性,利用希夫反應的原理,將核酸的醛基和二硫化物的一級胺形成共價鍵結,來設計本實驗。先用鹽酸讓核酸露出醛基,再和二硫化物的一級胺進行交聯。因為癌症細胞內的穀胱甘肽量高於正常細胞,可催化二硫化物的雙硫鍵,使其斷鍵,而釋放出裡面包覆的化療藥。搭配乳化反應,藥物載體在電子顯微鏡下為球型,粒徑是 55.89~115.7奈米,界面電位呈現負電。隨著 pH 值 3 往 10 變化,粒徑有變小和電位變更負的趨勢。載體在與兩種正常細胞共同培養後,呈現高存活率,顯示對生物體無毒。在模擬癌症的微酸環境中,二硫化物載體,相較於對照組,可釋放較多的化療藥。

數位彩色參數測量溶液性質

本研究探討溶液顏色與色彩參數RGB 值關係,在測量裝置開發上:光源上採用平板螢幕發光,讓試管色彩數值均勻,也可調整入射光強度與種類。在容器上,以方試管改善圓試管的不均勻吸收。以五層(長)試管,驗證多層數、高濃度,對應RGB 值會規律下降。所設計的裝置與手機 colormeterapp方法,可即時、簡單地測量方框內色彩參數平均值。以上設計已成功提供有色化學反應研究。 以此新設計,研究6 種指示劑酸鹼變色,將指示劑分類,並找出分子結構與 RGB 值關係。也成功應用在化學反應速率測量上。這發展出的方法裝 置,能應用在生活上,藉由將色彩變化定量,來解決許多問題。

細胞的社會住宅—開發應用於幹細胞培養具磁分離能力之纖維素微球

幹細胞治療為全球再生醫學趨勢。 微球是一種三維細胞培養的方式,目前最普及的微球Cytodex具價格高、需額外透析膜來分離材料與細胞等缺點,引發我們開發磁性奈米氧化鐵纖維素微球的動機。 藉由共沉澱法合成磁性奈米氧化鐵,再以乳化法將其包覆於羧甲基纖維素微球中,表面透過交聯反應使微球更加穩固。我們嘗試四種變因調控微球製程參數,成功使微球粒徑大小達到與 Cytodex 相近的長邊204.886 µm,且驗證幹細胞能於微球表面生長,並透過磁性分離快速獲得幹細胞。 本研究成果相較於市售微球透析膜方式,方便、環保且低成本。未來可進一步探討微球的光熱性質使細胞脫離微球表面,避免細胞傷害,利用化學材料設計與合成磁性微球放大幹細胞,提供更新穎的細胞培養分離方式。