全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

化學科

理論計算、設計及高效率極簡合成CaMKII抑制劑之最佳潛力抗癌藥物

鈣及攜鈣蛋白調節酶(CaMKII)存在於大部分細胞中,研究顯示其在多種癌細胞中過度表現。苯基磺醯胺衍生物為市售CaMKII抑制劑(KN-93)的常見結構,因此本研究參考文獻[1] 中抑制效果最佳的化合物1,並擴展臨床尚未解決問題,優化此類衍生物以製成抗癌藥物,以苯基磺醯胺為主架構,設計改良出多種候選分子。初步利用分子模擬分析軟體(Discovery Studio)模擬蛋白質與藥物分子結合,選定結合能最大且結合方位正確的結構。利用含一鍋化反應的步驟高效率三步合成化合物34,經核磁共振與高解析質譜儀驗證得出高純度產物。最後經生物毒性實驗發現化合物34對乳癌細胞毒性高且對於正常和乳癌細胞的選擇性都較市售抑制劑KN-93佳,符合理論計算的預期,未來極具潛力作為抗乳癌的標靶藥物。

「柚」〜「果」然來電!

進行水果電池實驗時,蒐集相關文獻得知,大部分水果電池測得電壓相差不大,產生電流也不大,心想也許是不同水果電池的內電阻太大而影響發電效能,因此嘗試加入不同角色添加物減少內電阻,及碳化電極延長電池壽命等,提升其發電效能,進行一系列實驗發現: 一、大部分芸香科水果果汁產生的電功率較高,其中葡萄柚汁電池發電效能較佳。 二、以40mL葡萄柚汁加入60mL石花凍液比例,製成「柚見石花凍電池」的發電效能最佳。 三、以赤血鹽水溶液加入葡萄柚汁,能降低「柚見石花凍電池」內電阻提升其發電效能。 四、將電極片鎂鋁片碳化,能延長「柚見石花凍電池」的使用期限 。 五、應用改良之「碳化柚見石花凍電池」能製作易攜帶、電力持久的「柚時鐘」。

常見藥物之共同前驅物—色胺合成策略分析

本實驗以探討 Aspidostomide G 的前驅物—色胺的合成策略為研究目的。我們選用 2-胺基-3-硝基苯酚作為起始物,經酚基保護、溴化、重氮化、碘基取代及 Sonogashira reaction 得到吲哚的前驅物—2-乙炔基-3-甲氧基-5-溴-苯胺。接著進行吲哚閉環、醛基化及 Henry reaction,最後再經還原反應得到 Aspidostomide G 的色胺前驅物。其中,我們在進行Sonogashira reaction及吲哚溴化反應時,遇到複雜產物無法分離的難題。為改善此情形,我們嘗試改變反應溫度、反應試劑及反應時長等……。經實驗發現,以 TMSA(2.5e.q.)及 CuI(0.1e.q.)作為反應試劑時,可使Sonogashira reaction得最高產物比率94.11%;在室溫下以 NBS(1e.q.)及 DCM(0.5M) 進行溴化反應3小時後,可得最高產率76.92 %。本實驗結果不僅可以為腎臟疾病藥物Aspidostomide G提供一條有效的合成路徑,更可以增加學界對 Aspidostomide G 的重視和研究意願。

華麗的轉身---紅龍果用於重金屬離子的偵測並轉換成螢光碳量子點

分別從紅龍果果肉和果皮提取甜菜紅素,可見光吸收光譜λmax=538 nm,可以與銅離子配位,從紫紅色變粉紅色。它對銅離子具有高度選擇性,偵測極限達1ppm。另外將紅龍果汁用來製備碳量子點,最佳合成條件是紅龍果汁稀釋成1/2,以180℃水熱法反應2小時,離心、透析純化,得到粒徑1-10nm的碳量子點。在紫外光-可見光吸收光譜λmax=285 nm,為碳量子點特有之共軛C=C電子躍遷。碳量子點在紫外燈的照射下會發出藍色的螢光,螢光儀測得放射光譜λmax=455 nm。以手機光譜儀結合樂高積木組成自製螢光光譜儀,發現在pH=2.5環境,稀釋倍率為1/1000時螢光表現最佳。當與銅離子接觸時,碳量子點的螢光會被淬滅。碳量子點螢光為無毒、低成本,可應用於生物、醫學之奈米材料。

欲寄相「虱」「鉛」里月-魚鱗吸附水中鉛離子探討

理化課時,常聽聞老師講述世界各地發生的重金屬污染事件,其中鉛離子所造成的污染及危害尤其嚴重。查詢鉛離子污染相關文獻以及移除鉛離子的方法後,發現膠原蛋白的螯合作用能去除許多有害重金屬離子。而膠原蛋白的來源之一就是從魚鱗提煉。 本次實驗主要在探討不同條件下,利用魚鱗及膠原蛋白與硝酸鉛水溶液中的鉛離子螯合的效果,並以碘化鉀做為指示劑,檢驗鉛離子的殘餘量。實驗結果顯示,魚鱗及膠原蛋白確實具有極佳的螯合鉛離子效果;而魚鱗中除了膠原蛋白,另一種化學物質羥基磷灰石會以置換反應,達到移除水中鉛離子的功效。在數據顯示上,可以明顯看出,虱目魚鱗吸附鉛離子確實具前景及研究價值。

一價銠金屬催化芳香基硼酯與炔類化合物進行不對稱串聯合環反應

本實驗我們使用芳香基硼酯a與炔類化合物b作為起始物,以銠金屬錯合物作為催化劑,碳酸鈉作為鹼性添加劑,且使用二噁烷與水為溶劑,在80℃下進行不對稱合環反應後,分析產物的產率及光學選擇性,以探討芳香基硼酯、炔類化合物上的取代基以及銠金屬錯合物上的配基等變因對反應的影響。 實驗發現,當使用氯取代的芳香基硼酯與二苯基乙炔為起始物時,催化反 應有最佳的產率(93.3%),且使用掌性配基與銠金屬形成的錯合物進行催化時,所得之產物具有光學選擇性。

知否?「茶」應是綠肥紅瘦 ― 探討不同環境條件下三種脂肪酶之活性

本研究欲找出可抑制脂肪酶活性之因子,故從110年10月展開實驗,將胰脂肪酶、小麥脂肪酶、念珠菌脂肪酶置入不同市售瓶裝茶、一系列咖啡因濃度環境中,以探討市售瓶裝茶、咖啡因及兒茶素對三種不同酶活性之影響。另外將胰脂肪酶置入以不同沖泡手法之綠茶溶液中,操作變因分別有不同沖泡溫度、茶葉浸泡時間、冷藏保存的時間,用以探討胰脂肪酶於不同環境中之活性大小。研究結果顯示,對於胰脂肪酶,兒茶素跟咖啡因均會抑制其活性,其中以咖啡因影響較為顯著。手沖綠茶之沖泡溫度及時間都會影響其活性,關鍵在於茶液中兒茶素含量;對於小麥脂肪酶,咖啡因可以抑制其活性;對於念珠菌脂肪酶,市售瓶裝茶可以抑制其活性,但並無法歸因於咖啡因及兒茶素。

皇宮聚膠綠電池

翠綠的皇宮菜葉所含葉綠素可以拿來發電,這引起我們興趣。本研究自行栽種皇宮菜,以它為自製綠電池的材料,且降低葉片選取上所形成誤差。首先,以伏打電池形式,嘗試找出有最佳發電效果的葉綠素萃取液,萃取方式上將葉子撕成1/2,乾燥後浸泡50%酒精,在暗箱中萃取出葉綠素;葉子則選擇光照足、成熟、綠色、無蟲害的來進行萃取;將葉綠素萃取液配製成75%,靜置後可以提升發電效益。研究最後發展自製出皇宮葉綠素電池和皇宮葉綠素果膠電池,各電池形式都可以讓LED燈發亮。自製葉綠素果膠具有成膜性、吸附性、溶解性和降光解等特性,讓葉綠素果膠膜比較好攜帶,延長葉綠素保存時間,避免被光解破壞,加水就能發電,增加電池應用性,和提高發電效益。

碳為柑止-生物碳吸附力及螢光應用

以泰源肚臍柑皮作為材料,將其烘乾製成粉狀後高溫鍛燒製成生物碳。檢測Zeta電位可知生物碳表面帶負電,分別對吸附亞甲藍、結晶紫、甲基橙等有機染料的效果探討,發現生物碳對表面具有不同電性之染料有明顯差異,且在混合染料實驗中可知生物碳對表面帶正電的亞甲藍及結晶紫有很好的吸附效果,反之對表面具負電的甲基橙則無,推測靜電力為主要吸附原因。 從上述生物碳表面電極以及染料吸附實驗結果,設計使用生物碳吸附水楊酸實驗,且結果證實生物碳可吸附水楊酸,再進一步探討生物碳在不同濃度水楊酸溶液環境下對吸附比率的關係。 同時為了探討生物碳重複使用的效果也使用酒精作為脫附劑進行了脫附實驗,結果證實重複吸、脫附三次的生物碳,吸附率皆達70%以上。

吸「金」「膜」法

許多文獻中提到,交聯作用後的海藻酸鈉薄膜具有吸附重金屬的效果,本研究探討海藻酸鈉薄膜在不同時間、不同溫度、不同磁場下對鎳、鐵、銅離子的吸附效能。研究結果發現,海藻酸鈉對不同金屬離子之吸附效果整體而言為鐵>鎳>銅;溫度上升使海藻酸鈉對鎳、鐵、銅離子的吸附率更快達成平衡,且使達動態平衡後的吸附率震盪幅度更大,此外,鎳、鐵、銅離子在45℃的環境中的吸附效果最佳;磁場強度亦會影響海藻酸鈉對鎳、鐵離子之吸附效果,銅離子則無明顯差異。