全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

咻咻~ 轉吧!風火輪

「風火輪」是1980年代以前兒童的童玩,將酒瓶蓋打扁穿線的風火輪,是小朋友們很喜歡玩的玩具,在玩的過程中容易發生危險幾乎已被遺忘。本實驗是利用簡單便宜的扳手與節拍器取代昂貴的馬達,釐清隱藏在風火輪中的物理。實驗結果得知『扳手往後、繩子被拉緊』時所產生的”波”,原來是繩子「自然頻率」和風火輪「轉動頻率」相同或接近時,所產生的共振現象。因繩子「自然頻率」和所受張力及繩長有關,故左右繩的共振振幅不一定一樣。轉動風火輪圈數為50圈時,繩子發生共振的時間維持較長、共振時的振幅較大。而繩長40cm時,繩子則不易發生共振現象。因風火輪在實驗過程中其位置會改變,在適當條件下,繩兩端都會產生一個完整的共振波。

看你飛多久-火焰木種子滯空的奧秘

尋找用風來傳播種子的植物,探討種子部分與翅膀部分的質量黃金比例為目的,討論種子翅膀面積、質量、重心位置等因素對種子滯空時間、飛行距離的影響,我們用校園中常見的紫葳科(Bignoniaceae)火焰樹屬(Spathodea)的火焰木(Spathodea campanulata )植物,撿取種子進行實驗。 我們發現隨著翅膀面積的增大,種子在空中停留的時間也跟著變久,飛行的距離也跟著變長,但不是無限制的變久、變長。實驗結果顯示,翅膀的面積增加成4倍時,有最久的滯空時間與最長的飛行距離。 利用第一次的實驗結果,我們選取4倍翅膀面積的模擬種子,進行重心位置的改變對滯空時間的影響。發現當種子置於翅膀的中央時,有較久的滯空時間,可能是當重心位於翅膀的中央時,有最大的下降截面積,有最久的滯空時間。

搖出呼拉圈的秘密

在觀察班上同學搖呼拉圈時,發現每個人搖呼拉圈的感覺不同,於是決定設計儀器來試試看,經過不同變因的實驗:呼拉圈的重量、大小、粗細、材質以及人偶的高矮、胖瘦和旋轉軸的不同,發現真的會有不同的結果。在實驗中,發現馬達轉動使呼拉圈在人偶的腰部上產生了離心力和摩擦力,所以呼拉圈不易掉下來;也從真實搖呼拉圈到實驗模擬搖呼拉圈,我們建議想要搖呼拉圈時,不容易掉落的方法是:穿的衣服不要太光滑,最好有凹陷紋路、粗糙布料;呼拉圈的選擇不要太小、太光滑、接觸面積多一些;搖動時,旋轉的弧度大一些,這樣應該可以搖得久些。也創作出容易攜帶、折疊式的呼拉圈,可以幫助媽媽們,在騎機車時,安全的帶著呼拉圈到戶外運動。

電風扇扇葉角度的秘密

本實驗主要探討一般家用電風扇葉扇角度對輸出風力的影響,在過程中藉由改變葉扇的角度及面積,探討電能功率轉變成輸出風力功率的情形。實驗中,我們假設葉片和空氣分子間的碰撞為彈性碰撞,並以此假設提出理論模型。再利用葉扇角度為0度角時,所測得轉軸處消耗的功率為背景,分析討論各種葉扇寬度及角度所對應的輸出風力功率,期望能從中找到較理想的葉扇角度。從實驗結果,我們發現要使向前輸出風力較大,其中一個方法是將角度調小來提高轉速,但因電風扇馬達的設計,若轉速過大會在轉軸處消耗更多的能量。所以需藉由調整葉扇的角度及面積,得到較佳的向前輸出風力或是較好的能源效率比。

不均勻介質中弦波形成駐波的研究

高中物理課本提到波動時,只討論到簡單的均勻繩中弦波傳遞的情形。我們想進一步研究不均勻介質中弦波形成駐波的現象。

睡針床

我曾經在電視上看過睡針床的表演很是懷疑。一個人躺在針床上,並且在人的腹部上放一把椅子,教一位女子爬上椅子上跳舞,難道尖銳的針不角刺破他的皮膚嗎?如終想不出所以然,這是我想探究的問題,於果請教師指導開始研究它。

凹透鏡焦距測定的新方法

學校中之物理實驗,其測凹透鏡焦距時,僅用一種“視差法”。我們認為“視差法”並非良好的測焦距的方法,因此,考慮到何不應用凹透鏡發散光線的性質,進行測焦距的實驗呢?因此,我們開始研究這種測定凹透鏡焦距的方法。

有趣的遊戲~比一比誰大

我到荷花池旁玩時,老愛捧水往荷葉上潑,看一粒粒透明的水珠在荷葉上滾來滾去,真好玩。但為什麼會有這麼奇妙的現象呢?有一次我逮著了機會請教老師,老師回答說這是由於表面張力的關係,同時也介紹我看一些有關表面張力的書,我愈看愈覺有趣,便決心好好研究這個問題。

遠離“干擾”與 “飄浮”─汽車擾流板之探討

學校的停車場停了十幾輛的轎車,其中有幾輛轎車的後車廂蓋上多裝上一片顏色和車子一樣的橫桿,我覺得很奇怪,請教老師,老師說這個東西叫做擾流板,它可以減少氣流對行駛中的車尾的干擾力量,也可以使行駛中的車子更為下沈,我聽了以後滿腹的疑問:流經車體的氣流怎會對車尾有干擾的力量呢?擾流板真能減少干擾的力量嗎?還有擾流板真能使行駛中的車體更下沈嗎?如果可以,那麼,怎樣安排方式的擾流板,才是最有效果呢?多寬?多高?什麼角度?什麼位置最恰當呢?為解決這些疑問,我們在老師的指導下,做了這一個研究。

聲音現形記瞧一瞧—聲音Do.Re.Mi

花了不少時間了解聲音的波動現象後,我們由已知音叉自組「U行長管空氣柱測量法」去推測實際聲速大小,結果與標準聲速誤差在10﹪以下,同時也比較出未知音叉的頻率。為了了解聲波與其他介質波動傳遞數率的快慢差異,我們由自製的「自動振動機」已成功的比較出粗繩波、細繩波及緊繩波的波速大小;以自動振動機控制單擺的規律擺動去撞擊自組煙霧箱,感受撞擊時產生的聲音及能量的傳遞,讓煙以不同的速率方式擴散,也從這個實驗比較出:空氣的聲速(20℃下)34300cm/s>>單擺擺動的速率10~20cm/s>煙圈自煙箱出口的速率3~9cm/s。為了讓聲音以更有活力、更有趣的方式具形化,我們以聲音三要素的方式設計了音波功的實驗。以錄影、電腦播放或現場感受的方式,就算聽不見也能看得到聲音的威力!為了讓聲音以另一種型式光來展現,我們以視覺暫留的現象定出音符定點展開的上、下、左、右的光點,再畫出音符的完整畫面;再企圖從跳動的反射光路徑中帶出舞動的Do Re Mi音符及曼妙的音樂。為了留住聲音的軌跡,我們將聲音以色彩的方式舞動出來、以不同紙材吸附對照,以感受古典音樂、搖滾音樂…等節奏下形成的色彩畫面。