全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

隔空取物-利用超音波懸浮控制物體的移動

隔空取物可能嗎?使用3D列印製作超音波懸浮裝置可使保麗龍球穩定懸浮,透過肯特管內共振波形與聲壓標準差的比較,聲壓的節點位置為肯特管波的位移腹點。在一個超音波懸浮裝置形成的駐波中,聲壓節點以外的聲輻射力使得物體被推往節點,因重力影響靜止懸浮在聲壓節點處下方。透過超音波的電壓調整改變共振波振幅,使得共振波節點位置會因為電壓造成的聲壓節點隨時間移動而改變物體位置,但此方式較難穩定控制物體移動方向。最後,我們透過共振波相位差控制改變共振波節點位置可讓保麗龍球穩定懸浮及移動,有效達到控制物體移動的目的。自製可同時改變兩個發射器間的角度及距離的裝置,搭配改變相位或電壓的程式,方便進行聲懸浮的實驗觀察及記錄。

水電砲

本研究最初的發想來自於任天堂寶可夢遊戲中的招式「水電砲」,對其感到好奇的我們便想藉由操作實驗來模擬其中的情形,並對於此招式能否在現實中實現,及其達成效果的可能性,提出質疑與猜測。 我們測量不同型態的出水裝置、不同流速的水流、觀測不同噴射距離,也調整電壓大小,發現這些變因都與水電砲的可行性有關,且意外發現流速會影響水柱的型態(連續柱狀還是出現水花狀態),同時也對結果有顯著的影響。但也發現出水裝置的水壓、承受水電砲攻擊的導體厚度皆與測量結果無關。透過研究的進行,我們也了解許多尚未聽過的有趣知識,譬如關於流體的伯努利定律;導電率是什麼;什麼程度的觸電會造成傷害,綜合以上知識讓我們得到了想要的答案。

風中翱翔-找出最省力的飛機機翼

首先,設計研究一來找出最好的輔助噴氣裝置。觀察到當裝置的出風口為1公分且不延長路徑時,可讓吹風機的噴氣效果 增強以便輔助觀察。其次,透過研究二改變機翼模型的材質、重量、與形狀來找出最好的機翼模型。發現,材質不會影響飛行效果。而飛機機翼形狀在寬度為10公分且形狀固定時,用長為12公分的機翼模型,可以用最少的風力維持飛行。研究三整流,發現鼓風機製造出的氣流是紊流,所以添加吸管等材料來達到整流的目的。發現,縮減吸管的直徑雖可讓氣流變穩,但也會消耗風力。在保持風力的前提下,最具有整流功能的紙加一組粗吸管柱,所以用其來輔助觀察研究四。最後在研究四,測量研究二各種機翼上層的風速,來做為研究二的討論資料。

魔戒三部曲~以物理模型和tracker分析翻轉落體的運動模式

鏈與環魔術簡稱為魔戒,本研究將魔術tricks藉物理模型與tracker軟體分析,化成探討翻轉落體運動物理模式。發展四種物理模型進行實驗、攝影與截圖、tracker分析其S-t、v-t圖和相關物理量,解釋環套鏈成因。包括:1.環套鏈物理模式分為翻面落體期、立環直落期、翻鏈套環期與鏈環彈跳期等階段;2.翻鏈套環期決定環能否套入鏈;3.環套入鏈變因與影響程度為:鏈單位長度重量>環質量>鏈長度>環直徑;4.鏈愈輕、環愈重、環直徑愈大時,環可套入鏈長範圍愈大;5.鏈愈長,第二階段立環直落期時間也愈長,其他階段幾乎相同;6.環重遠大於鏈重時,鏈長會糾纏成多個套結,鏈短則形成半個套結;7.經鐵環兩點雙track過程,得知環翻轉運動軌跡。亦發現,一節節鏈設計亦為環能套入鏈成因之一。

三線式張拉共構體穩定性研究

張拉共構體以常見的細繩使一個結構漂浮在半空中,想了解張拉共構體當中的原理。有一篇科展研究 提到三條線的張拉共構體做不出來,經實驗發現製作穩固的三線式張拉共構體方法及注意事項。 過程中,重新設計張拉共構體三次,發現上結構懸浮隱藏著槓桿原理,成功使用有彈性的繩索測量共構體繩索的張力。探討張拉共構體的懸浮特性獲得的結論:1.三線式的張拉共構體需要在上結構追加重物才能讓它穩定不翻倒。2.三線式張拉共構體的上結構有槓桿原理的特性。3.三線式張拉共構體的懸掛重物越重,越能夠承受一定程度的橫移晃動,但是第3號線將承受整個結構體的拉力及重量。4.第3號線的位置越接近第1 、2號線將使上結構可以承受比較大幅度的晃動。

水中的奇妙力量探秘—沃辛頓射流

我們以實驗室容易取得的重物與乒乓球模擬網路上跳水彈射手中球體的沃辛頓射流實驗。結果發現圓形的類天然海棉因為具有吸水迅速、可以平穩入水的優點,因此選擇以此為托球的載體進行實驗。依據我們的實驗結果,至少需要15公分水深才能形成完整的射流彈射出乒乓球,原則上在下落軌跡完全垂直於水面時,落下高度越高,球體彈射高度越高,實際實驗水深15公分以上時,落下高度50公分彈射高度約可達47公分,但結果受限於托球的海綿在落下高度40公分後下落軌跡不穩定,若期望更高的射流強度需要尋找更穩定下落的載體。

凌波微步-漂、浮體於振動液面之運動狀態探討

本報告旨在探討不同形狀的物體在振動液面上的運動現象,通過改變物體形狀、漂與浮的狀態,及實驗時的振動條件,觀察物體的行為,並以液體表面張力、漂體與液面夾角的變化、振動模式與流場狀態解釋。研究發現:疏水性漂體因表面張力漂在振動液面上時,其重力會造成液面凹陷,由於漂體形狀對稱性質與質量分布差異,造成各端點與液面夾角不同,液面為漂體提供不同方向與大小的作用力,並產生不同的流場,使其移動與轉動,其(角)速度受液體種類、振幅、頻率、漂體質量影響。此外,在振動液面上移動的漂體與其他漂、浮體間會因為液面狀態互相影響產生交互作用力,進而出現吸引、排斥、繞圈的現象。

波以爾對抗托里切利的表面功夫—探討量測大氣壓力、震度與氣體流速之影響

本硏究運用波以爾定律以及托里切利原理,討論不同口徑對應不同水柱壓下,因開口的表面張力及邊界層效應產生之「綜効表面壓」,模擬與實測漏水量的變化。 實驗操作流程為以管長L一端開口一端封閉的水柱管,開口朝上注入高h的水量,將其封閉倒置後,其水柱管內氣壓與外界P0相同。開啟底部使其漏水至平衡,結果發現使用一般的水就可以簡易量測大氣壓力的條件。 進一步探討擾動對系統的影響,在綜効表面壓的作用下,於特定的震度和震頻時瓶口的加速度具有週期行為,並得出本系統應用於偵測氣流的限制與可行性。 本研究由已知的原理出發,透過實作來探究複雜且真實的機制,進而發現有趣的物理現象與實用價值。

好宅—菜宅擋風模型研究

「菜宅」是澎湖人因應冬季強勁且挾帶海水飛沫的東北季風,建來防風種植的設施,而菜宅有不同樣式與尺寸,哪個擋風效果更好?風吹到菜宅又會怎麼變化? 透過製作風向計、風向觀測架、風洞、菜宅模型與研究台,我們測量看不見的空氣。利用塑膠瓦楞板和水管製作壓縮比1.4倍、開口40cmx40cm的風洞,能讓工業電扇吹出風速3.9m/s~4.2m/s的相對穩定風源 。 牆面改變氣流,在不同支流交互作用下能在牆後產生逆向風和風無區,較高、較寬的牆面效果愈明顯,另外,具延伸牆的ㄇ字型和長方形菜宅,能阻擋側風吹入,也能阻擋側面支流進入菜宅,而改變迎風牆後的無風區和逆風區範圍。 據本實驗,在逆風區最遠處搭建第二道牆面(長方形菜宅)能產生最大無風範圍,增加種植面積。

急速「傘」耀-降落傘終端速度的探討

影響降落傘使用安全性的變因有哪些?降落傘速度多快時,會開始平穩緩慢降落?因為好奇這些問題,我們先自製簡易降落傘,再作實驗探討,可能影響它的安全性的變因有哪些。 參考過去相關研究作品後,發現影響降落傘平安降落與否的「終端速度」,無人嘗試探討過,我們用micro:bit(V2版本),測量降落傘降落過程的加速度與時間數值後,用物理學計算方法,算出不同方式製作的降落傘,降落過程中達到的終端速度有多快。最後發現當降落傘符合傘面半徑大、總重量輕、傘繩長度 讓傘面展開最適當的面積、傘繩數量少、傘面材質輕且沒有破損等這些條件時,終端速度會越慢,安全性也越高。希望此次研究能讓降落傘的製作更完善,也許可搶救更多高空意外現場的性命呢!