撲克牌遊戲中的數學原理
我們這個作品想討論2個關於次序變化的問題, 第一個是約瑟夫問題的公式. 原始的約瑟夫問題是說, 將正整數1,2,…,n 依序排成一圈, 從1開始1,2,1,2,…報數,不斷去掉報數為”2”的數字, 求出最後剩下的數字, 細節在Knuth教授的著作: 具體數學 (參考文獻[1]) 被完整的得出. 我們參考文獻[2]了解以前這個問題的進展程度, 並試著用我們的方法推導出以下問題的公式. 問題如下: 給定n個數字及正整數L, 在報數規則為”留1去L”時 (從1開始1,2,…,L+1,1,2,…,L+1,…報數, 報數為2~L+1的就去掉, 不斷重複此過程), 在第x次被刪除的數字的公式, 並應用此公式找出不動點 x 滿足: 第x次去掉第x個數字. 在一般的”留 α 去 β “的情況, 我們則推導出一個便於計算的迭代關係.
自然係數不等式ax+by+cz≦n的非負整數解
常我們遇到形如 x+2y+3z≦10 的不等式,而欲求其非負整數解的組數時,我們習慣的解法是:令 z=0 得x+2y≦10,共有( 0 ,0 , 0 ) , ( l , 0 , 0 ) , ( 2 , 0 , o ),…… 及 ( 2 , 4 , 0 ) , ( 0 , 5 , 0 )等 36 組非負整數解。 z = 1 得 x +2y≦7 ,共有( 0 , 0 , 1 ) , ( l , 0 , l ) , ( 2 , 0 , l ),…… 及 ( 0 , 3 , l ) , ( l , 3 , l )等20組非負整數解。z= 2 得 x + 2y≦4 ,共有( 0 , 0 , 2 ) , ( l , 0 , 2 ) , ( 2 , 0 , 2 ) , …… 及 ( 2 , l , 2 ) , ( 0 , 2 , 2 )等 9 組非負整數解。z = 3得 x + 2y≦l ,共有( 0 , 0 , 3 )及( 1 , 0 , 3)等 2 組非負整數解。故合計有 36 + 20 + 9 + 2 = 67組非負整數解,這種解法主要是利用平面z = 0 ,…,z = 3 來逐點截取合適的解,它的精神由下圖(在坐標平面IR 2上)可以明白的表示出來,因此我們稱這種解法為“逐點截取法”。但是,一但n=1000 ,甚至更大,或是一般自然數 n ,如何用逐點截取法一點一點去取?顯然,它是繁瑣得令人厭煩!於是我們幾位同好就著手研究這個問題,希望能從中得到一個較為簡便的方法,下面就是我們的研究過程,請各位老師、先進指導。