凡走過必留下軌跡
平面上有一線段AB 與圓錐曲線Γ,令P 為Γ 上的動點,本研究探討當P 點沿著Γ 移動時,DABP 的外心、重心、垂心、內心、傍心及費馬點的軌跡,我們發現重心軌跡具有複製性─重心的生成曲線是原軌跡的縮影;外心軌跡多為射線、線段或者是直線,也有可能退化成點;特別是A,B 為橢圓焦點時,其垂心軌跡方程式是y 為二次,x 為四次的曲線,在特別情況下會退化成橢圓或圓;內心軌跡為橢圓;傍心軌跡為橢圓及兩條切於橢圓長軸端點的直線;當A,B 為雙曲線焦點時,其內心軌跡為切於雙曲線頂點的切線線段,其長度等於共軛軸長;傍心軌跡為兩條雙曲線及四條射線。費馬點的軌跡均為兩上下對稱的圓弧。我們試圖將條件推廣成一個定點及兩動點的情況,發現圓上雙動點的重心軌跡為玫瑰線,當兩動點以速率比為1:k 時( k IZ )運動,順向時會產生向內的環,反向時則產生向外的環且會產生k -1 個環。此外,我們將生成軌跡疊代時,發現:無限多次後,重心會收斂於一點;垂心則有對偶性。