全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第60屆--民國109年

荖生藏碳-探究荖葉的螢光碳奈米點

本研究在開發一種新的原料合成螢光碳奈米點,以台東的特產荖葉當作碳源,研究此碳奈米點在不同條件下的穩定性和螢光特性,進而探討未來的應用。 我們將荖葉烘乾磨成粉以水熱法進行碳化,進一步純化後,合成水溶性螢光碳奈米點,碳奈米點在紫外光下放出藍色螢光,相對螢光量子產率約為5.4%。在不同條件下檢測環境對碳奈米點螢光的影響時,我們發現在0到1.0 M的NaCl水溶液、紫外光照射50分鐘、pH 2.0~12.0間,碳奈米點皆有良好的穩定性,其螢光強度沒有明顯的變化。將此碳奈米點與各類金屬離子混合後,只有汞離子會造成碳奈米點的螢光強度下降,經調整或許可以開發出對汞離子有選擇性之碳奈米點。未來可應用此碳點的螢光特性作防偽辨識、生物顯影等功能。

三乙氧基辛基矽烷與二氧化鈦反應之疏水性探討

本次實驗主要在於疏水塗層,透過在實驗室裡做出三乙氧基辛基矽烷與二氧化鈦反應生成的疏水塗料,將此疏水塗料沉積在清潔基板上,用不同的材質去沉積疏水塗料,比較不同材質的附著性,我們發現清潔基板要使用霧面玻璃,並且搭配重量百分比濃度約為11.3%的異丙醇溶液,或著將塗料塗到第三層,再搭配通風櫥抽乾,所顯現出的疏水效果會最明顯,接著探討疏水塗層的自清潔與應用在水泥與瓷磚上,再探討疏水塗層抑制黴菌生長。

移動城堡-避債蛾應用蓑巢生存策略之探討

避債蛾常見於防治病蟲害名單,我們探討微型大蓑蛾應用蓑巢生存策略,從2019年9月至2020年7月共10個月。研究發現:一、避債蛾一世代用同一蓑巢,飼養孵化小幼蟲0.1cm,多數初齡幼蟲從母蓑巢下方飄落時已有蓑巢;雌蛹巢比雄蛹巢長。二、幼蟲築巢步驟:1.咬碎枝葉;2.用絲把碎葉黏成帶狀;3.在葉帶滾動黏在身上;4.再補上其他碎葉黏合成簑巢。幼蟲約蓑巢0.5cm開始增補蓑巢,如有破損會立即修復。三、小幼蟲蓑巢圓錐形,雄蛹巢多為長圓筒錐形,雌蛹巢多為紡錘形,巢愈大巢材更多樣化;蓑巢內部鋪絲絨、蓑巢上下開口也有絲絨。四、大、中幼蟲多棲息葉背主脈,小幼蟲多棲息葉背葉肉;棲息行為可能有領域性。蓑巢搭配有黏性的絲線成為協助避債蛾的生存策略。

揭開自製鋁空氣電池讓風扇連續轉動十個小時的秘密--電池效能提升之研究

鋁空氣電池是過去科展研究過的題目,但利用備長炭製作的電池是否能重複使用,能讓風扇馬達運轉時間可以多久,以及如何增加鋁空氣電池的放電效能等問題,在過去的報告中並未深入研究,故引發我們研究的動機。在一系列的實驗下,我們歸納出五點發現:一、導電性好的備長炭,所製作的鋁空氣電池效能會較好。二、備長炭製作的鋁空氣電池,備長炭可以重複使用。三、備長炭濕度稍高,鋁空氣電池讓風扇馬達運轉的時間較長。四、鋁空氣電池的運轉需要氧氣,增加氧氣濃度可以提高電池效能。五、透過補充食鹽水改良的設計,會提高影響鋁空氣電池的效能讓馬達風散連續運轉超過十小時,電量相當於兩顆三號碳鋅電池,此結果希望對發展環保電池有貢獻。

探討鉑錫合金結構對直接乙醇燃料電池陽極催化反應之影響

現代各國重視環保,醇類燃料電池因此崛起,而其中最為安全的乙醇燃料電池使用之Pt金屬觸媒容易受中間產物毒化降低穩定性,因此Pt與其他金屬形成合金觸媒之相關課題具極高的研究價值。 本研究主要針對鉑錫合金觸媒的結構進行探討,選用內核—外殼型奈米鉑錫合金粒子與無特定結構結合(Random-Alloy)之鉑錫合金進行比較,經由電化學圖表分析後,得到油相法合成內核—外殼型鉑錫金屬觸媒的標準流程。經過乙醇氧化反應的循環伏安法及其他分析測量方法比較後,發現本研究製成之內核—外殼鉑錫金屬觸媒,可以有效使乙醇在較低電位開始反應、提升乙醇氧化之反應活性及維持較長時間的穩定度,可應用於乙醇燃料電池之陽極。

如「膠」似「漆」-台灣淡水渦蟲黏液黏性及抗菌功能分析

本研究探討渦蟲爬行黏液應用功能。以化學及物理方式分析渦蟲爬行黏液黏性,確認其應用於仿生材料可能性,化學分析利用高濃度膠片及常見醣蛋白染色法PAS與過點酸硝酸銀染色,並以銀染分析做對照,發現渦蟲爬行黏液醣蛋白分子量為15~10 kDa及低於5 kDa部分。物理分析利用自製落球及斜坡實驗,發現渦蟲水溶性黏液黏度為2.7mm2/S,非水溶性黏液具黏滯性使鋼球於斜坡實驗中減速。再來分析渦蟲黏液抑制環境菌能力,探討其開發為抗菌塗料可能性,初步發現渦蟲爬行黏液中含有細菌,並使用無菌過濾渦蟲水溶性黏液進行抑制環境菌實驗,發現其對曝氣水中所收集到的4種革蘭氏陽性球菌產生抑制效果。未來將分析渦蟲黏液中醣蛋白種類及黏液抗菌機制。

抽絲解密─大賀蓮中螺紋導管的特性與應用性探究

本研究是在探究大賀蓮(Nelumbo nucifera )中螺紋導管(次生壁增厚)的分布、生長特性,並比較蓮絲和蠶絲之應用性。結果發現大賀蓮的根、儲存莖(蓮藕)、地下莖、葉、葉柄、花、果實及種子的導管皆有次生壁的增厚,增厚方式有環紋、螺紋及網紋。蓮的生長時間愈長,次生壁增厚形狀愈複雜,從螺紋導管中抽出一束絲的絲線排數也越多,其中以挺水葉葉柄下端內圈的絲束數及絲束的絲線排數最多,增厚形狀也最複雜。次生壁增厚生成於導管,主要功能在支持植物,而次生壁的增厚不會加速水份輸送的速率。蓮的次生壁增厚可以抽取出來做為布料的絲線,其保暖性、透氣性、快乾性及耐重性都沒有蠶絲(生絲)效果好,但吸水性及耐酸、耐鹼性較蠶絲佳,最大優點為較為環保。

行動式空汙追源裝置 以鉻酸鉀溶液吸光度測量還原性氣體濃度

本研究以光度計偵測鉻酸鉀溶液濃度,以其高氧化力特性,定量SO2與C2H2濃度。 結果證實氣體濃度與鉻酸鉀吸光度下降,有高度線性相關。SO2的最適方程式為:吸光度 = -0.2362 x (SO2體積%濃度) + 0.4472,偵測極限1.69%。C2H2的最適方程式為: 吸光度 = -0.146 x (C2H2體積%濃度) + 0.4492 ,偵測極限2.74%。並運用光度計原理,以3D列印與雷射雕刻製造機體,結合紫光雷射、風扇攪拌器、數位電錶與薄膜輸氣裝置,組裝「行動式420nm紫光雷射光度計」與氣體收集裝置,驗證鉻酸鉀溶在濃度10-4至0M之間,與光敏電阻值有高度線性相關:電阻值(kΩ) = 57044 x [K2CrO4] + 1.5309,R2為0.98。實際應用到乙炔測量,每公升乙炔使電阻值下降0.2041 kΩ,為行動式裝置,已能有效偵測氣體汙染事件,預防類似氣爆事件再發生。

應用網路爬蟲於社交軟體實現群眾互動平臺之研究

現今的大型活動,如校慶活動、新北耶誕城等,缺乏互動性與參與感,其中原因大多是群眾埋沒於手機的社交軟體所導致。而本研究將利用其便利與群眾互動特性,使用問卷抽查法探討大眾對於活動的觀點,應用網路爬蟲技術抓取貼文,設計一套能提高互動性的平臺,使用者只需在Instagram、Twitter等社交軟體中發布文章,系統會即時推播至活動中的大螢幕上,並且使用LineBot結合圖像辨識自動且快速審核貼文,另方面以後臺系統,方便活動單位常駐貼文輪播活動訊息、廣告與管理。綜上所述,本研究結果確實有效地提升活動互動性及樂趣,以時下流行的各種社交軟體,配合研究平台為各類大型活動量身打造,也能夠運用於政令宣導或文宣廣告等用途上,大幅提升活動的互動性與參與感。

算數「蓋」厲害-蓋斑鬥魚的數感與攝食偏好

為了探討蓋斑鬥魚的攝食偏好以及數感,實驗設計採視覺主導的攝食行為,將餌食放入二選一的實驗箱,讓蓋斑鬥魚做出攝食選擇。我們透過不同種類及大小的餌食來確認蓋斑鬥魚的攝食偏好;再以不同數量的餌食來驗證其數感,並記錄反應時間以確認其算數能力。結果發現,比起飼料,蓋斑鬥魚偏好選擇吃紅蟲;也偏愛較大顆及數量多的餌食。另外,對於5以內的餌食具有數感,感數能力則會隨著兩側餌食數量的比值接近1而下降;當比值在0.75(3v.s.4及4v.s.5)以上,反應時間明顯增加,顯示蓋斑鬥魚具有算數能力。最後,不同性別部分,公魚對於紅蟲的偏好高於母魚,其他變項則沒有明顯差異。體型部分,大於8cm的蓋斑鬥魚算數能力明顯優於小於8cm的蓋斑鬥魚。