整數分割
本篇研究主要在探討「將n顆相同的球放入m個相同箱子的方法數fm(n)的性質」。我們先利用「正三角形內部任一點到三邊的距離和」及「正三角錐內部任一點到四面的距離和」為定值,求出f3(n), f4(n) ,進而得知fm(n)的公式是由一系列的多項式所構成。接著證明fm(Lmq+r)是q的m-1次多項式及當m≧2k-1, k=1, 2, 3時,第k高次項係數所構成的數列〈Akm, r〉為k階等差數列並求得ΔiAkm的一般式。 接著引進階差運算,證明在m是偶數的條件下,若〈Akm, r〉是k階交錯等差數列,則〈Akm+1, r〉是k階等差數列,進而保證〈Ak+1m+2, r〉是k+1階交錯等差數列,最後得證m≧2k-1, kϵN時, 必為k階等差數列。 若Akm為Lm的單項式,我們找到一個系統化求ΔiAkm的方法,藉此可求得數列〈Akm, r〉的任一項。最後給出一個關於Akm為Lm是單項式的猜想。