全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第二名

二維複合式凸輪於自動鏟花之研究

在機械產業當中,工具機組裝中的配合面都會運用到鏟花這項技術,佔有極為重要的位置,現今當中鏟花主要還是以人工的方式來進行,並且是一項技術性高的工作,在課堂上也有看過業界的鏟花師傅示範,我們實際操作起來也不容易。 我們利用鏟花刀驅動機構來實現鏟花刀的軌跡,利用課堂所學到的知識和加工技術專業背景來開發機台,我們主要以3D列印機的運動控制為基礎,設計複合式凸輪機構,再藉由樹莓派控制Python程式語言控制鏟花刀轉向機構及鏟花刀驅動機構所需的機械動作,來達成具有不同角度及分布的鏟花承斑,這些操作都只需運用到觸控板控制數莓派便能減輕人工的負擔。 我們設計的機台具有自動化加工功能來取代人工,並且不會有人工傷害,也不需具備鏟花技術,操作介面簡便,人本成本低,便達成自動化的目標。

過氧化鈦應用於檢量線及光觸媒之合成

安一直是當前重要課題。本研究為了偵測殘留的鹼性魚浮靈,利用檸檬酸鹽做為緩衝液,製作Ti4+-H2O2檢量線系統,除了可以用來快速定量殭屍蝦是否超標,實驗亦將其應用於鑑別本研究自製光觸媒分解魚浮靈的效能。 為了實際解決被檢驗出的殭屍蝦問題,實驗開發雙氧水共熱方法來製作二氧化鈦,以硫酸鈦作為水相鈦來源,並尋找最佳的檸檬酸添加比例來合成,實驗發現:在製程中添加檸檬酸有助於製作效能更好的光觸媒,分解水中的過氧化氫更加快速。實驗也進一步探討了過氧化氫的分解級數,實驗發現魚浮靈一旦殘留在水中,會存在較長一段時間。 實驗也測試了製作魚浮靈檢驗試紙的可行性,肉眼的偵測極限可及6ppm左右。未來可望整合這些技術,為環境盡一份心意。

滾積木遊戲之研究與推廣

在mxn大小的棋盤上,將一個sxsxt大小的長方體積木立於左下角的格子(始點),以「倒、滾、立」三種移動方式,以及「向右、向上」兩種方向移動至右上角格子(終點)。本研究的目的在找出所有的有解盤面,以及盤面有解時所有的可行路徑數。作品中我們找出了路徑數的遞迴關係式,並推導出所有可行路徑數的通式,同時求出最小移動步數與最大移動步數。

開闔有度聚散離奇

在「拼組相同剪刀、剪刀組能完全開合」條件下,我們發現若4段臂兩兩等長,則能拼出直線行進剪刀組;若 軸心不在2臂中點,則能拼出弧線行進剪刀組;若4段臂不全等長,則能拼出斜線行進剪刀組。 將弧線行進剪刀組頭尾相拼,形成封閉剪刀組,當其剪刀間形的變化是三角形時,內圈會圍成正n邊形,我們能依此算出在平面中,拼成封閉剪刀組所需的剪刀數量。在彎曲臂剪刀部分,只有當彎曲臂夾角皆相等,且夾角為正n邊形一內角度數時,才能拼成封閉剪刀組,其能在平面中朝圓心、圓周作變動,但不能像直線與斜線行進剪刀組般能無限網狀拼組。 拼組、操控剪刀組能增加面積、體積或折疊縮小,將此應用在太空科技中,能節省運送太陽能板的空間。

消化或循環?扁蟲往復式消化道之發現

扁形動物蚵蛭已知有捕食消化的描述,但對研究價值更高的野生扁蟲相關文獻卻極為稀少。本研究以台灣近水域常見的網平扁蟲 (Paraplanocera oligoglena) 為對象,探討其捕食與消化行為。確認網平扁蟲為廣食性礁岸海域石下多種腹足類物種掠食者,覓食分攻擊、捕食和消化三階段,且僅捕食活體,為非腐食性生物。首創活體動物消化道觀測技術,以染色手法觀察網平扁蟲高迴數分枝的消化道,發現三種類別:枝狀管、盲管與循環管。藉動態影片追蹤食物進入扁蟲消化道後的移動,發現分節運動與蠕動現象,進一步分析其收縮頻率與運動方向,觀察到未曾報導過的雙向蠕動現象,確認消化道運輸模式為非循環的往復式蠕動。期望未來持續了解更多物種的消化腔,並提供野外族群追蹤的可能性。

臺灣紅樹林與鹽沼土壤碳封存能力差異:以新竹新豐地區與臺中高美溼地為例

本研究以臺灣新竹縣的新豐紅樹林與臺中市的高美溼地,分別作為臺灣紅樹林與鹽沼的代表。經過元素分析、粒徑分析及密度分析之後,比較臺灣紅樹林與鹽沼兩個藍碳系統的碳封存能力差異及和國外相關研究間的差異性。本研究發現,採樣地距海越近,有機碳佔底土比例越高;粒徑較小的沉積物顆粒,較可能儲存更多有機碳;並藉此得出了藍碳相關研究受地理環境影響很大的結論。各採樣地樣本的活性有機碳(LOC)比例多大於難降解有機碳(ROC)比例,可能是由於臺灣的藍碳系統缺乏河川穩定供應有機物,又受到年齡與氣候條件的影響,其中儲存的ROC在總有機碳(TOC)中所占的比例不高,因此不適合長期儲存有機碳,卻很可能在幾十年內快速形成一個新的碳匯系統。

第一電池-探討利用地衣共生真菌與藻類建構長效微生物電池之可行性

本研究旨在探討如何利用地衣共生藻類與共生真菌天然的互利性來建構長效的微生物電池,此實驗將培養出的地衣共生真菌與藻類利用海藻酸鈉(SA)進行固化,並進一步製成不須添加質子交換膜的晶球地衣電池,並觀察其發電量。經觀察,本研究之地衣電池電壓高峰為0.497V,且目前已維持運作1038小時,電壓仍有0.3 V。由上述可知,利用海藻酸鈉固化之方式能製作出穩定且高效能的地衣電池;而地衣取自於自然環境,亦不需添加質子交換膜,故對成本低廉且環境友善成本低廉,符合永續發展目標(SDGs)中的目標七:確保所有的人都可取得負擔的起、可靠、永續及現代的能源。期許未來能夠發展為具備實用性且低成本的綠色能源。

捷運AI異物辨識及智能煞車輔助系統

台中捷運發生吊臂掉落,造成傷亡慘重。我們查找文獻缺失,利用機器學習Google Teachable Machine和數學相似演算法,做出AI異物辨識系統,解決捷運無法主動偵測異物的問題。經文獻得知,列車煞車需167m,我們透過鏡頭變焦和倍率放大提高辨識距離。用Mediapipe Holistic和角度比值演算法解決距離辨識的問題,做出險阻手勢AI辨識系統,解決隨車員和月台保全無法溝通的問題。用MQTT傳輸技術,設計無線控制按鈕,經由ESP32和L298N控制列車啟閉,減少隨車員尋找鑰匙等流程,錯失救援時間。此外,我們建置的系統將軌道沿線辨識異物,上傳Google雲端試算表,供政府進行預防措施。

摺疊管的研究

我們將三浦摺疊運用在紙管上,發現能摺出「單位管」的條件為:8個全等平行四邊形(內角不為90度)相拼成V字形;邊長為1、內角為60度的平行四邊形拼成單位管,我們求出其最大體積約為1.5;而改變平行四邊形邊長與角度之間的關係,當單位管側面沿摺痕壓平摺疊後,能摺出3種不同樣貌。將N個相同的單位管洞連接起來,形成「N-單位管」2個相同的N-單位管共有4種拼組方式,拼組後能正面與側面壓平摺疊;我們用數個N-單位管相拼,發現能做出負重點朝上和洞朝上的負重結構,分別最少需用4個2-單位管垂直相拼和8個N-單位管水平相拼;若數個N-單位管拼組後只能側面壓平摺疊,則只需3個N-單位管水平相拼,就能做出洞朝上的負重結構。

點穴止毒:精準控制細胞胞吞作用來抵抗病毒入侵

人類為對抗新冠肺炎,研發出疫苗以減少重症,卻難以阻隔病毒進入人體,且導致許多副作用。新冠病毒會結合細胞表面的ACE2受體再藉由胞吞作用進入細胞,注入相關分子或讓ACE2失活可減少病毒進入人體,但卻會嚴重影響ACE2原本的功能,因此我們想要發展精準抑制病毒入侵細胞的方法。利用囊泡黏合系統,我們成功地停止負責廣泛胞吞作用的Rab5囊泡運輸,但其無法抑制病毒進入細胞。接著我們將負責帶入病毒的ACE2囊泡停止在細胞膜周圍的微絲上,可以有效地抑制病毒進入細胞,且不會影響其他的胞吞作用,讓ACE2還可在細胞表面正常工作。我們成功地發展出新的策略去精準抑制病毒進入細胞,且能減少對其他功能的不良影響,此技術可望提供新的策略來對抗不同的病毒危害。