全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

探討特定因素對馬倫哥尼效應的影響

本研究探討乙醇水溶液滴入沙拉油中之液滴分裂行為,分析液滴滴落高度與有限邊界對液滴分裂行為影響。研究液滴擴散最大、分裂完成與分裂後兩分鐘的最終狀態,並修正反應時間模型。結果顯示,滴落高度越高擴散範圍與分裂液滴數量增加,最大擴展直徑呈U型變化,反應時間於中間高度(約10cm)出現局部最小。邊界越大時分裂更完整,液滴平均面積較小,邊界過小則影響母液滴為維持最小表面能而收縮、分裂的速度,使反應時間增加。首次提出液滴內縮機制,觀察到液滴分裂未完成即出現內縮(TypeII現象),由乙醇與水揮發差異導致擴散接著內縮形成圓環,為文獻未提及之新現象。整體結果補充液滴分裂行為,未來可應用於微流體與表面張力相關研究。

不再DOWN的啄木鳥-探究科學玩具啄木鳥上升之因素與原理

本研究在探討啄木鳥科學玩具向上爬升的原理,並透過井字形結構,加振動喇叭的動力啄木鳥,探討懸臂長度、孔徑大小、輸入音源的振動頻率、振源位置與音源輸入振幅對啄木鳥上升速度的影響。 研究發現,啄木鳥玩具會在特定頻率下快速上升,與振動頻率是否對應到機構的自然頻率及共振效應有關。動力啄木鳥在懸臂長為300mm、孔徑10.3mm、振動頻率150Hz時,上升速度最快。振動喇叭放置位置會對啄木鳥上升速度造成影響,速度大小依序為懸臂前端>懸臂末端>懸臂中間。孔徑會影響啄木鳥的 升速度 ,而非自然頻率。音源輸入振幅需大於iPad音量10格才能使啄木鳥上升。

奔跑吧!火焰!——單向繞圈移動火焰之探究

有一天,我和家人在網路上看到了一段非常有趣的影片。影片中,作者用花盆底座的外圈凹槽當作軌道,倒上燃料後點火,結果出現了一個像賽跑選手一樣在軌道上跑來跑去的火焰,而且一直繞圈轉不停。圖1是影片的截圖。這個現象讓我們看得目不轉睛,但也讓我們忍不住懷疑:這影片是真的嗎?火焰真的可以這樣移動嗎?這種現象會不會需要什麼特別的條件?因為對這個現象非常好奇,我找了幾個和我一樣有興趣的朋友,還請教了老師,希望一起來做研究。我們想通過實驗來找出火焰為什麼會這樣移動,還有哪些條件能夠讓它發生,也想知道會影響火焰移動速度的原因。我們希望能透過這些實驗了解背後的科學原理,並為火焰的動態行為研究提供一個有趣又不一樣的觀點。

“魔法隱身與穿牆術”-全反射與光穿隧效應

自然課學過反射、折射和稜鏡色散,於是利用壓克力和不同液體來探討全反射和光穿隧現象,發現降低表面粗糙度能減少散射,以利觀察雷射光路徑;而紅光和紫光的折射角差值可作為色散的簡易指標。此外,液體溫度、濃度及相變化也會影響臨界角;結合不同臨界角可達成「魔法隱身」;結合不同全反射,則可應用於液體高度警示。 同時也探討全反射在介面形成的漸逝波(Ref.[1]),利用液體填入介質空氣縫來降低折射率落差,或是將空氣縫隙減小到幾微米以下,都能讓漸逝波穿越空氣縫來實現「魔法穿牆」,此現象稱作光穿隧(optical tunneling)效應(Ref.[1]),或受抑全反射(frustrated total internal reflection) (Ref.[2]),未來可應用在精密測量領域。

瓶起瓶坐—探討瓶中內容物與翻轉角度的關係

本研究旨在探討瓶中內容物與翻轉角度關係,採用自製單擺裝置進行實驗,並使用了不同水量、不同角度以及不同內容物三種操作變因當作研究目觀察翻轉角度的變化。例如:變換不同初始翻轉角度、瓶中水量、變換不同內容物、改變瓶子重心……等。在內容物為水且單純變換翻轉角度及水量的實驗中,得到了初始翻轉角度愈大,翻轉角度愈大以及水瓶受到的慣性愈小,翻轉角度愈不規律的兩個結論;在變換不同內容物的實驗中,證明了非流體在水瓶中的重心變化較小,流體的重心變化則要依據流體的流動程度進行判斷;在改變瓶子重心的實驗中,證明了水瓶的重心變化愈小,翻轉角度愈大;水瓶的重心變化愈大,翻轉角度愈小。

響由形生~喇叭狀共振腔對聲音表現的影響

本研究探討喇叭共振腔的波導形狀,對聲音傳播距離、響度和音色造成的影響,我們依斜率變化自製窄頸、橢圓、三角喇叭共振腔進行探究,成功發現形狀影響聲音表現背後的物理關聯。研究結果如下: 1.喇叭狀設計會引導聲波能量更順暢往出口集中傳播,也會改變諧波數量造成音色變化。 2.窄頸喇叭響度增強效果最好,聲音傳最遠。 3.三角喇叭在中低音諧波太多,易產生雜音。 4.喇叭邊界的形狀會決定空氣對流速度,窄頸喇叭空氣流動最慢反而響度最高。 5.聲波遇到喇叭邊界後,產生的干涉會影響傳播距離與範圍:窄頸喇叭能量集中於中央軸線 ,傳播遠,具指向性;三角喇叭兼顧傳播範圍和強度;橢圓喇叭能量均勻散佈腔體,傳播範圍最廣但強度不足。

浮光流轉-走馬燈探究

透過一系列實驗研究走馬燈的設計與性能,探討不同因素對旋轉速度與穩定性的影響。實驗中,用紙杯與卡紙製作燈罩及燃料杯,並測試燈罩的長度、大小、開口方向,以及燃料種類與燃料杯設計對熱氣流的影響,希望能改善走馬燈的運轉效果。結果發現,當空氣受熱上升時,會驅動紙杯旋轉,而開口方向決定了旋轉方向,當開口朝左時,紙杯呈逆時針旋轉,當開口朝右時,則順時針旋轉。此外,我們測試了不同高度與大小的燈罩,變化開洞的數量、形狀與角度,並調整洞口在杯側的位置,以分析其對旋轉效果的影響。這些結果有助於理解熱對流、燃燒機制與機械運動的關係,也為改善走馬燈的設計提供了參考依據。

擋水神器-特斯拉閥的探討

特斯拉閥是一種神奇的發明,能利用管路的設計,達成流體在一個方向上流動時阻力最小,而在相反方向上流動時產生顯著的阻力的目的,我們想要運用在阻擋水流來降低災害上,我們的研究有以下的發現:(1)特斯拉閥的進水口角度為40度及出水口角度為30度時,減流的效果最佳;(2)特斯拉閥的支流愈寬,減流的效果愈佳;(3)交錯型主水道略優於對稱型主水道,但結構較複雜;(4)水流愈強,特斯拉閥減流的效果愈好;(5) 水的溫度與鹽度對於特斯拉閥減流效果沒有太大影響; (6)前後排列支流的特斯拉閥效果優於平行排列支流,且支流數量愈多,減流效果愈佳。

回心轉「易」!橡皮筋逆向滾動機制之探討

射出去的橡皮筋竟然會自己滾回來,使用自製「逆向滾動發射器」,橡皮筋以一定的斜拋角度發射,它會在空中高速旋轉,跟地面接觸後,旋轉動能與地面摩擦力相互作用,產生逆向滾動效果。橡皮筋是不太均勻的彈性體,所以電子磅秤進行重量篩選,搭配圓形校對模型和自製靜態拉伸測量器,嚴格控制橡皮筋的物理參數,降低其他變因的影響,找出最佳滾回條件組合是: 1.直徑4.8cm近似圓形橡皮筋,重量0.60g,寬度3mm,彈性係數最好的k72。 2.橡皮筋不均勻拉伸比例1:1.5,中段轉折支架設定在正中間位置B。 3.發射點距離地面75cm,最佳斜拋發射角度20°。 綜合上述發射條件,橡皮筋發射後不但能成功滾回,而且多次測試常常超過原始發射點,展現良好滾回效果和動量維持性!

翻滾吧!花式彈跳板的跳躍軌跡探討

有趣彈跳板能像游泳選手在起跳台用力一蹬,產生不一樣彈飛運動。本研究發現:自製20度斜坡擺在高度10公分彈跳蹬台,彈跳板對折後把頭部放置與稜線距離3公分,起跳瞬間用高速攝影分析起跳角度接近45度,而且後側板對斜面及拉緊橡皮筋撞擊稜線都會產生下壓作用力,獲得斜向反作用合力,出現對稱彈跳軌跡,彈飛水平距離最遠203.2公分。當彈跳板鉛直向上,姿態如芭蕾舞者,呈現連續左右水平圓周方向快速旋轉,軌跡最直不傾斜!令人驚豔是彈跳板黏貼小小墊片竟能彈飛精采多樣的舞姿,當彈跳板斜向拋物,會逆時針連續後滾翻;當增加配重,翻轉變超快,落點更集中;當墊片黏腳部重心降低,有頭上腳下垂直圓周方向連續快速翻轉現象,非常有趣!