全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

軟的真的軟嗎? 轉速穩住了彈性圓環的飛行軌跡

本研究探討旋轉對彈性圓環飛行軌跡的影響,並以橡皮筋為實驗材料,主要結論如下:一、橡皮筋的伸長量與所受外力約成正比。二、彈性係數較高的橡皮筋,特定範圍內的位能-動能轉換比例較高。三、彈性係數愈高的橡皮筋,彈射時的轉速與前進速率愈大。四、伸長量固定之下,提高旋轉量不會增加橡皮筋彈射速率,但會增加轉速,穩定彈射軌跡並增加彈射距離,且旋轉量愈大,水平距離愈遠。五、旋轉造成橡皮筋彈射具有穩定形狀,特定伸長量與旋轉量進一步使橡皮筋彈射出現攻角導致軌跡上升,也降低速度衰減,明顯提升彈射距離 (超過40%)。

笛管新聲-探討簧片對笛子聲音之影響

直笛是每位學生必學樂器,加上簧片巧思,創作出簧片直笛。實驗變因控制為形狀(三角形、梯形、長方形),厚度以及材質。運用問題解決,開發出雷射切割簧片及板擦機吹氣,將人為誤差去除。實驗發現,三角形簧片會將頻率往上移動,上升最大59.2%。梯形簧片,當簧片寬度越寬,振動頻率越低。長方形簧片,簧片長度越長,振動頻率越高。當厚度越厚,頻率會變低。不同材質簧片,發現投影片簧片頻率變化最佳。從共振分析得知,當簧片振動頻率接近笛子自然頻率,音量增加。當簧片振動頻率沒有接近笛子自然頻率時,無法發出聲音。原本學生常用的高音笛,配合簧片替換創新,可吹出超高音笛的聲音。「笛管新聲可創造出不同音域的巧妙變化」。

舞動熱流-探討熱量在流體中的傳播

本研究探討熱區與冷區在水中造成的對流與擴散現象,並以水蒸氣柱模擬氣旋中心熱氣流及颱風眼內部結構。結果顯示,熱區擴散速度隨溫差顯著上升,冷區則變化較小,呈現不同的對流型態。進一步量測蒸氣柱風速與垂直溫濕度分布,發現風速於一定高度出現「零風點」,其高度與蒸氣柱直徑呈比值約為7。此區為熱對流動能轉弱之處,對應氣旋眼牆的無風層。最後導入外圍切線風,成功建立具對稱性之旋轉風場,重現類似颱風眼牆的氣流結構,為理解熱帶氣旋的垂直環流提供可驗證的實驗依據。

風的整形大師~探討不同條件對微型風洞氣流穩定性的影響

風洞是重要的流體觀測設備,生活中許多物件都需要經過「風洞」研究空氣流經物體所產生的氣動效應;但風洞設備體積大又昂貴,小學生難以接觸到,因此,本研究針對微型風洞的製作條件進行探討。 本研究針對微型風洞的風速大小、整流段孔徑大小及長度、收縮段延長長度等變因,進行氣流穩定性觀測,運用水煙及紅色點狀雷射光點輔助氣流的呈現;結果顯示風速及整流段孔徑過大或過小都不利於層流的產生,整流段較長及收縮段適當長度有利於層流的穩定呈現。 研究發現使用孔徑9mm大小、長度20cm的整流段,組合收縮段延長長度10cm,搭配風速1m/s,是自製「微型風洞」較佳的組合條件,可以清楚觀測氣流在微型風洞中層流的產生,適用於中小學生對於流體的觀測應用。

植物聊天室~聲音頻率之探究

聲音是振動產生的聲波,當流體中形成氣泡或空隙時,壓力會迅速下降到蒸氣壓以下,於是就會發生空蝕現象,產生震動而有聲音。我們利用PlantWave感測器,夾住植物的葉子,植物因空蝕現象產生震動,感測器測到震動電波,透過演算法轉換成聲音,再將聲音經由phyphox app測得其頻率。我們進一步以植物的種類、不同器官、不同環境、不同對待方式、不同的澆水量等作為實驗的變因進行,再透過手持顯微鏡的鏡頭觀察水分在維管束中流動情形,結果發現實驗葉片面積較大者、同株植物較成熟的莖、環境的溫度較高濕度較低、在受觸摸對待、水量較多、缺少空氣及陽光的狀態下,水分傳輸變化較快,推測在植物內部氣泡及壓力產生變化,形成空蝕現象,因而所測得的聲音頻率較高。

水花消失術

本研究探討跳水過程中不同因素對氣泡與水花產生的影響,並分析如何透過改變跳水姿勢來減少水花量。結果顯示,球體直徑與撞擊速度增加皆會顯著提升水花高度與氣泡空腔大小。水平速度會改變水花傾斜角度並減少高度,使氣泡空腔偏移。柱體形狀與錐度比對水花影響顯著,圓柱體產生穩定現象,尖頂柱體則集中撞擊能量,產生更高更細的水花。手部姿勢與面積大小顯示手掌外翻放平與小面積能有效減少水花與氣泡空腔,達到最小水花效果。最後,水花消失術是跳水前擦乾身體,入水前身體筆直頭向下、雙手向水面伸直,手掌外翻抓手放平,入水後,將空氣帶入水底,減少氣泡空腔造成的沃辛頓射流現象,以水底產生氣泡浮出水面取代水花,進一步降低水花產生。

液滴與固體表面的碰撞行為探討

本研究利用注射器與蠕動泵浦穩定產生直徑 3mm 液滴,並以高速攝影觀察其撞擊行為。實驗發現液滴撞擊乾燥固體表面時,表面粗糙度對接觸角影響不明顯,親水與疏水材質則導致「錨定」或反彈翻轉。進一步研究顯示,液滴撞擊濕潤表面時,親水材質易拉緊液滴表面使其回彈,超疏水碳黑表面則造成液滴彈跳分離。針對濕潤IC晶片進行熱交換分析,結果指出高韋伯數液滴可打破錨定產生飛濺與擴散,顯著提升散熱效果,當韋伯數達193.3時降溫幅度達8.6°C,效能較低韋伯數提升近80%。本研究證實韋伯數與表面性質對液滴撞擊行為具關鍵影響,對液冷與熱管理技術應用具有潛力。

磁來運轉~磁性齒輪轉動圈數比因素探討

本研究主要是以磁力特性與齒輪傳動原理為基礎,再透過資料蒐集、影片觀察與3D建模分析,並設計及製作零件可拆式之 磁性齒輪,可隨著各種圓心角的變化放置磁鐵和鐵質層進行實驗,依照各種放置物的分布不同,而呈現特定的旋轉比例關係。研究包括同軸性磁性齒輪、徑向式磁性齒輪,又可分為平面式與立體式,同時也研究磁性齒輪應用於生活中的可行性,例如:利薩如曲線等。 設計分析上我們採用3D建模分析法,以及實際測量磁場來修正建模理論,加上實作上的考慮,而設計出轉動圈數比較穩定的磁性齒輪。 在實驗上,我們利用強力磁鐵,配合適當的鐵質層,以及找出磁性齒輪的對稱性組合,設計出穩定圈數比的磁性齒輪對於產品的性質及應用表現非常滿意。

沃辛頓射流控制術-不對稱邊界的影響

沃辛頓射流是指物體掉入液體中後,在液體下形成空腔,經由表面張力的作用,空腔收縮並向上噴射的水流。瞭解射流機制與抑制射流引發的噴濺,在機械潤滑與公衛領域是重要的課題。本研究透過空腔與容器的交互作用,影響射流的形成空腔形變會改變表面張力的合力方向,使得局部收縮速率不同,進而影響射流的高度與方向。透過改變空腔兩側形變的程度,我們可以有效控制射流偏移方向,本研究進一步透過自製頂針,讓空腔局部變形,藉此產生射流偏移,證實張力波並非射流偏移的主要因素。本研究的成果,為射流的 研究提供一個新的觀點:空腔弧度大小決定收縮速率與方向,未來可藉此影響空腔收縮,協助科學家降低空蝕現象對機械的破壞。

咖啡渣田拔蘿蔔-非牛頓顆粒流體的力學

在電影場景中的流沙是可以吞沒人體的自然現象,但實際上流沙能覆蓋人體的深度並不深。從文獻報告顯示,流沙是非牛頓流體的一種,但表現出來與太白粉所製的非牛頓流體不同。利用咖啡渣來建立流沙的受力模型,發現不論在阻力的表現、表面出水的現象與物體沉入的狀況與流沙都極其相似,以咖啡渣作為流沙的模型,可以減少使用玉米粉或麵粉所造成的浪費,同時可控制粒徑大小,測量受困者與流沙間的受力關係,立新的研究模型。在定力的實驗中,對物體施以垂直拉力,瞬間拉力約為物重的80%即可拉起;若沒有瞬間拉力,則需物重的120%以上。在動態的實驗中,物體所受的阻力會因著受力擠壓、含水量多寡、接觸面積、力量作用時間的不同而有差異。