凹凸有竅門,完美再呈現! ~六邊形蜂巢堆砌策略之探討
我用前兩年研究的結論延伸探究在凹凸形狀的蜂巢中擺放灰色六邊形透過有系統的堆砌方式及策略應用,兼以「一筆畫」方式檢驗是否為最佳化組合並依據模組間的相互關係值,求得K值包圍的白色六邊形總數計算公式 。 在P值相同的條件下我得到幾個結果: 1.凹角一種和凸角二種皆能有系統的堆砌及排列規則。 2.經由模組相互間衍伸出的關係值所有個別模組的W值總和、角對角數量(A值),共用格數量 (S值)可找出較佳的堆砌組合,並求出包圍的白色六邊形總數(K值)。 3.透過「一筆畫」方式,能找出最少路徑數(K值),以檢驗每種堆砌組合是否為最佳化組合。 4.得出的結論延伸應用於課室的分組座位安排,以縮短課堂巡視的路徑數(K值)。