二維及三維不完整堆垛方法數之研究
從堆垛金字塔發想,定義了「不完整堆垛」。 一、底列個數n之二維不完整堆疊方法數P(n)=1/√5[(1+√5/2)2n-1-(1-√5/2)2n-1] 且P(n)=3·P(n-1)-P(n-2),其中P(1)=1, P(2)=2。 二、以邊長n之正三角形為底的三維不完整堆垛,方法數T(n)=4T(n-1)-2T(n-2)+T(n-3), 其中T(1)=1, T(2)=2, T(3)=7恰與以正方形為底相同。 三、以邊長n之正六邊形為底的三維不完整堆垛,方法數H(n)=9H(n-1)+3H(n-2)+H(n-3), 其中H(1)=1, H(2)=7, H(3)=67。 四、正三角形與正六邊形的凹洞數有6倍關係,影響方法數。 五、T(n), S(n), H(n)是新發現的數列。 六、本研究討論正三角形、正方形、正六邊形為底。其他正多邊形皆無法研究。 七、以「m列m+K行」長方形為底的三維不完整堆垛,只能橫放方法數 A(m,k)=1+A(1,K)·(m-1)2+A(2,K)·(m-2)2+…+A(m-2,K)·22+A(m-1,K)·12 若能橫放或直放方法數 R(m,k)=4R(m-1,l)-2R(m-2,k)+R(m-3,k)+(2k+1)R(m-1-k,k)-(2K-1)R(m-2-k,k) 八、以股長n之等腰直角三角形為底的三維不完整堆垛,方法數 I(n)=3I(n-1)-2I(n-2)+I(n-3),其中I(1)=I(2)=1,I(3)=2。 九、以邊長n之菱形為底的三維不完整堆垛,方法數r(n)=5r(n-1)-r(n-2)+r(n-3),其中r(1)=1, r(2)=3, r(3)=15。 恰與平行四邊形相同。 十、正三角形與菱形的凹洞數有2倍關係,影響方法數。