全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

工程學科(二)科

搖出超級電容

本實驗利用椰子殼、甘蔗渣和茶葉渣等廢棄物,高溫鍛燒製成不同碳源。與傳統活性碳相比,這些碳源具有更多的表面官能基和中型孔洞,是超級電容的理想材料。我們在製造超級電容時,以氮摻雜的活性碳和特殊膠黏合,並添加不同種類和濃度的電解質(如H2SO4、KI、KNO3、KOH)進行實驗,測試其有充電和無充電狀態下的電容值變化。我們成功找出最佳超級電容製造條件,即椰子殼鍛燒於600℃、以H2SO4作為電解質,其充電後的最高電容值達200mF/cm2,且在7天內保持穩定,未出現衰退現象。透過CV圖可證實,此碳材的反應是完全可逆的,非常符合超級電容的性質。這些廢棄物的轉化為高功能性、高附加價值的優秀電子產品,不僅輕巧且便於攜帶,更具有高穩定性,完全符合綠色化學的精神。

把學校塗綠——教學場域綠建築化

近年來全球暖化愈發嚴重,教育部為了維持學生的學習品質,發起 「班班有冷氣」 計畫,試圖使學生能夠在舒適地學習,但是冷氣對能源的需求非常高,何況在全校都使用冷氣時,能源的使用量更是怵目驚心。因此,以正確得方式擺放冷氣使其以最低能源用度能夠有效降溫,和如何從根本改善教室內悶熱的問題,即是本團隊的目標。為了親身調查和感受實際情況,本團隊至當地一國民小學進行環境因子調查,了解到氣候受風向、風速、通風換氣量、太陽角……等等因子左右,並發現通風不足是最主要導致室內悶熱的原因。根據結果,本團隊提出三個改建方案,和小成本改造之可行度列表,而欲確認改建方案是否可行,則以模擬小屋進行「在聚熱層開設通氣孔」的實驗。

運用機器學習和軟體模擬優化泵浦旋葉

本研究主要整合實驗測量、田口實驗與人工智慧機器學習等方法,發展優化泵浦旋葉技術。首先以3D列印開發多種相異外型族群與不同葉片數目共計82種設計,以實驗探討旋葉構造形狀與泵浦之流量、揚程及效率,進而找出效率較佳的旋葉並作為基底,過程中應用電腦輔助分析軟體進行旋葉內部流場與應力場分析驗證,搭配透明運轉泵浦觀察不同轉速下旋葉內部流體流動狀態,田口法研究結果發現由信躁比與均值分析結果顯示入口斜率為最重要的影響參數、其次分別為旋葉數與出口斜率,影響最小則是上蓋厚度,且優化設計旋葉T3C-10-2-4-4最佳。機器學習方面,經由多元線性回歸訓練模型預測出未知的旋葉效率(Y值),訓練完成後得到平均絕對誤差Mean Absolute Error (MAE)皆小於1.5。

藍已去除–探討二氧化鈦奈米線在不同製程下對亞甲藍的降解效果

本研究是探討將P25二氧化鈦改質成奈米線,其製程在可見光照射下對亞甲藍的光降解效果(10mg奈米線降解20ppm、15mL亞甲藍溶液)。首先我們在五種不同水熱溫度中找出最佳製程溫度,接著以不同的水熱時間找出最佳製程時間,最後發現以TiO2/180℃/18hr為最佳二氧化鈦奈米線製程條件,在可見光照射下降解率達41.7%。接著以此二氧化鈦奈米線作為載體,添加1.0%的銅、銀、鐵,發現添加銀可提高其降解率。最後以銀作為添加金屬,改變濃度製作觸媒,發現以1.0%的銀為最佳製程條件,降解率為60.4%。另外我們對觸媒進行XRD、SEM、PL、氫氧自由基檢測、BET、DRS分析、觸媒回收率、二次降解及日光降解之效果。我們發現觸媒回收率可達94.2%,二次降解效率可達99.0%與94.0%。

柔性光柵其光學特性與力學分析之研究

光柵作為常見的分光元件,應用於許多光學儀器中,但光柵普遍彈性較差硬度較大,使光柵應用受到了侷限,因此本研究以有著彈性佳與易形變特性的PDMS作為柔性光柵的材料,對其不同厚度與彎曲程度進行一系列的測試。為了找出厚度、彎曲曲率與繞射效果之相關性,進行了不同厚度柔性光柵之繞射點分析實驗,由實驗結果可知增加柔性光柵越厚會使其彎曲時第一亮紋改變率增加,反之。為了試驗柔性光柵受到不同施力方式其分光效果是否有所差異,故進行了拉伸與壓縮的方式形變柔性光柵,結果得知其拉伸時軌距會被拉大,壓縮時則會被擠壓變小。研究最後想了解利用PDMS複製類似光柵的結構是否也有分光效果,實驗結果發現指紋能夠分光,希望後續能將其特性實際運用。

非對稱反摺溝槽陣列過熱表面之液滴自推性能及冷卻效率

工業中時常會運用噴霧冷卻(圖0.1),以液滴的潛熱變化冷卻高溫表面。因此為了提升高溫噴霧冷卻的效率,本研究基於過往文獻與(Hsu,2023)共同研究微奈米結構表面ARG上液滴的碰撞運動,並由實驗推論高溫表面蒸氣層和氣泡推力的作用。接著由單一液滴碰撞實驗推導實驗和理論受力模型並進行比較。最後進行單一液滴冷卻實驗並推論連續液滴冷卻實驗結果。本研究發現ARG表面的各運動特性均優於文獻,且利用液滴的受力更全面地了解液滴運動和冷卻效率的關係,更在最後驗證其冷卻效率優於對照組,並發想探討連續液滴冷卻的實驗方法,以更貼合工業上實際的噴霧冷卻。經過此研究,ARG表面能夠實際應用於工業上高溫表面的噴霧冷卻。

「炭」觀止矣-生物炭吸附水中汙染物之探討

在本研究中燒製溫800°C、600°C、400°C的竹殼與大王椰子生物炭對亞甲藍與磷酸鹽溶液皆有吸附效果並皆符合Langmuir以及Freundlich等溫吸附方程式。在生物炭吸附量的比較中,藉由實驗參數qm((最大吸附量)的比較,知在在亞甲藍與磷酸鹽溶液中,論論燒製溫度的高低與否,椰子生物炭普遍較好(最大吸附量),唯一例外為在亞甲藍溶液中燒製溫度800℃之竹殼生物炭吸附能力佳(。最後在動力學模判斷中中,們藉藉由實以以及理論衡吸吸附量,計算出相對誤差值進行比較。亞甲藍溶液中,400°C、600°C以及800°C生物炭皆符合擬二級吸附動力學。磷酸鹽溶液中,400°C及600°C燒製的大王椰子與竹殼生物炭分別較適用擬一級與擬二級吸附動力學,而800°C燒製的生物炭皆適用擬二級吸附動力學。

新型碳點微胞作為金屬離子的回收與應用

本研究以Marquis試劑修飾碳化韭菜籽萃取物微胞,成功合成出新型的碳點微胞M-CLSEMs,其表面有豐富的官能基,在修飾磺酸根後於水中的分散性與穩定性佳,並有激發波長相關光致放光之特性相似碳點。M-CLSEMs有效回收多種重金屬離子,對於鎳、鉛、鐵、鉻與金離子有將近100%的極高回收率;銀、鈷、銅、鋅、鋁與鈀離子也有70%以上的回收率。M-CLSEMs可作為還原劑與穩定劑,透過快速、綠色合成的方式製備出水相及有機相的金和鈀奈米粒子,並成功進行4-硝基苯酚的催化還原反應。未來將可嘗試利用M-CLSEMs合成出不同的金屬奈米粒子,運用於有機金屬催化、汙染物的降解、抑菌、癌症治療等方面。

鈦錳啦!藍「解」「除」橘!─探討MnO2及TiO2對亞甲藍及甲基橙的去除效果

本研究利用合成不同形狀TiO2/MnO2/ZnO,藉由改變接觸面積進而提升染料去除率。在初實驗中將9種金屬氧化物與甲基橙/亞甲藍/甲基紫反應,發現TiO2-甲基橙與MnO2-亞甲藍之組合有較好的去除能力。在改變反應溫度的實驗中,TiO2-甲基橙之去除率隨著溫度上升而降低,當中以25℃ 海膽形表現最佳,而在MnO2-亞甲藍的反應中,則以海膽形在25℃時表現最佳。最後改變染料溶液的pH值,發現TiO2海膽形在pH5.7時表現較佳,MnO2則是在低pH時有較高的去除率,推測該結果與顆粒零電荷點及染料pKa值相關。透過BET與PL分析,TiO2海膽形及MnO2海膽形有較佳的比表面積與氧化能力,故整體去除效果最佳。此外本實驗亦利用LC-MS驗證反應的確成功分解染料,且利用生物試驗證實處理後之溶液對生物毒性明顯降低。

染料敏化太陽能電池性質研究

本實驗我們主要使用LED燈做為光源來對比接近太陽光波長的白熾燈,並使用碘液對比I- /I3- 電解液。我們發現當二氧化鈦膜燒結溫度在300~450度間以及當二氧化鈦膜面積為5cm2、浸泡於染料時間20分鐘時效果為最好,便在後續變因下維持這些因素。此外,我們也自行萃取出花青素、葉綠素、兒茶素三種天然染料來做比較,並透過太陽光能轉換效率公式計算出電池效率嘗試找尋效果最好的天然植物,後續也以此為根據嘗試了混和不同染料。同時,我們藉由觀測LED燈與近似太陽光波長的白熾燈照射下的結果來進行電池性質的比較。