全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

欲速,〝渦〞可達!

本研究主要探討,定向水流作用於水面下擋體時,在前方形成渦流的變化情形。我們模擬溪流中岩石堆疊,並自製水壓觀測儀、壓力點推論模型、水流強度測量裝置來觀察和驗證,找到穩定形成渦流的環境條件,也發現渦流讓流速變快的秘密。研究結果如下: 一、四種產生自由渦流的岩石排列中,阻擋型渦流出現的位置最集中且固定。 二、阻擋型渦流的產生是因為兩側擋體製造了加壓點,讓下方水快速轉動,形成雙渦合流。 三、水流速185cm/s以上,阻擋型渦流平均持續時間和間隔時間比大於15:1,穩定出現。 四、水位與岩石高度比會影響阻擋型渦流穩定性,比值在1.86至2.14之間時,表現最佳。 五、阻擋型擋體的夾角在120度時,產生最大的水流強度,達到4.22倍的增益效率。

黃河之水天上來-免電力自動補水

最近經常停電,老師常常宣導因應地球暖化要節能減碳,因此我們搜尋資料並嘗試設計不需要電力的魚缸供水系統。歷經第一代簡易供水系統的研發,第二代運用希羅噴泉的探究提供水源,到第三代運用虹吸原理設計除了供水之外還能幫魚缸替換原本的舊水達到活化魚缸水的功效,已經可以取代原本需要馬達抽換水的功能。本研究還使用廢棄或可回收的物品來完成主要供水設備,除了創意十足外,可行性非常高,運用大自然的力量當作能源,可以減緩地球資源耗盡枯竭的時程。希望資源可以永續發展,也為我們生活的地球盡一份小小孩的心力。

就問你「浮」不「浮」:浮球的穩定性討論

我們利用扭蛋製做單軸、分離式及貫通式雙軸浮球模型,進行海水與淡水的載重與吃水深度、配重位置與傾斜角度、造波和回正觀察。發現載重與吃水深度呈線性關係。不同配重位置明顯影響分離式模型的傾斜角度,重心越低,角度越小。貫通式模型易保持正浮,但重心較高者,正浮不穩定,稍受擾動即傾斜。 在造波中發現浮球呈週期性運動,且浮力最大值在波峰,最小值在波谷,相差可達50%~85%。垂直方向運動速率最大值約在平衡位置,垂直位移最大值<2倍波高。 不同配重位置的貫穿式模型以90°傾斜入水,軸頂到重心的距離(L)決定浮球是否回正。本實驗發現全長16cm的模型,L≥11.42cm者,均可回正,L≤11.17cm者,均無法回正,顯示L越大浮球穩定性越高。

等一下!第一名的結論對嗎?-有關凹陷乒乓球如何復原的研究

59屆國展國小組物理科第一名作品提到「球殼內空氣受熱膨脹而造成的壓力增加效果,對凹陷乒乓球的復原產生極小的作用」。實際經驗:凹陷乒乓球一旦有孔就無法遇熱復原,所以想確認實驗。 用自製壓球器確保凹陷的深度與形狀後,確認相同凹陷乒乓球遇熱後沒孔的球可復原,有孔的則不能。利用自製氣壓計確認了59小物作品中球殼內部空氣受熱產生的壓力被嚴重低估、讓凹陷乒乓球恢復所需壓力被高估。 我們重要實驗的結論有二,第一:「氣體受熱膨脹是讓本研究中凹陷乒乓球復原的重要原因」此與59小物的結論不同。第二:我們體驗到同稱作"凹陷乒乓球",差異可能非常大(材質、厚薄、凹陷形狀…),因此還是可能在某些狀況下59小物觀察的現象存在。

無「鰭」不「泳」—探究水平尾鰭對其運動行為的影響

這是截至62屆科展為止,第一件研究水平尾鰭在水中運動行為的科展作品。 歷經長時間努力終於研發出能模擬海豚利用水平尾鰭的擺動在水中向前游動的「機械海豚」,更進而研發【水中推進力/升力測量儀】,成功以「重量」形式呈現水平尾鰭在不同變因下所產生的推進力及升力,透過「推升比值」精準檢視其前進能力。 研究發現水平尾鰭的擺動速度、面積、形狀都會影響其在水中的前進能力,有趣的是尾鰭擺動得越快,不見得會越游越快喔! 最後研發的【水流檢測儀】可環景無死角地看出水平尾鰭擺動時的水流變化,小檢測球的設計更是讓水平尾鰭後端的4個漩渦完美地呈現在眼前!證明水平尾鰭的擺動會製造渦流降低前進的阻力以提高前進的效能。

風水輪轉―氣、液兩用特斯拉渦輪發電機設計與應用探討

2050年淨零碳排的目標,全球積極發展再生能源維持充足的能源供應。本研究以廢棄光碟片製作特斯拉渦輪,學習大自然黃金螺線改良;分別以空氣及水兩種流體,比較渦輪轉速效果,轉子採用螺線數量:0條、2條、4條或6條,分別搭配0度、10度或20度入口角度。氣源壓力為1.00kgw/cm2時,採用4條螺線,搭配0度入口,轉速為1735RPM,相較特斯拉渦輪轉速746RPM,轉速提升133%;水源壓力為0.50kgw/cm2時,採用4條螺線流道,搭配10度入口,轉速為657RPM,相較特斯拉渦輪轉速381RPM,轉速提升72%;透過黃金螺線引導,可有效提升低壓流體的渦輪轉速。以氣源帶動渦輪成功驅動輪轂發電使LED燈照明;並對鋰電池進行充電,展示特斯拉渦輪發電效果。期盼可以發展成小型發電裝置並應用。

F1賽車的魅力-Double D 空氣力學套件開發研究

模擬高風速對模型遙控車產生之Double D (Downforce下壓的力與Drag阻力)比值切入空氣力學套件角度研究。下壓的力增輪胎抓地力,轉彎速度增快,縮短單圈時間 (lap time)贏得比賽。我們選取Nissan GTR與F1 Ferrari SF21遙控車,以巴沙木自製單層、雙層(主副翼不同角度組合)、三層共17組尾翼,自製風洞模型、掃葉機風力、2個電子秤同測前後輪下壓的力、拉力計測阻力,發煙機及LED燈拍攝氣流。結果發現尾翼寬度增寬與尾翼攻角越大,可增加下壓的力。阻力與風速平方成正比,相關係數0.94。對雙層尾翼,增加副翼角度比主翼角度更可增車子下壓的力。主翼0∘-副翼75∘造成「總下壓的力變化量/阻力變化量」比值0.78為最大,乃增加穩定度之最佳尾翼選擇。再以3D列印技術製作出最佳主翼0∘-副翼75∘尾翼。

改善疊椅卡住之研究

塑膠椅疊在一起椅腳間有摩擦力,當拉力小於最大靜摩擦力+椅重就拔不開,因此本研究主要探討椅腳加裝魔鬼氈、市售和自製半圓珠對於疊椅拉力的影響。先以魔鬼氈與市售半圓珠做實驗,發現市售半圓珠降低拉力效果比魔鬼氈好,且半圓珠越厚越多,則降低拉力越多。再來以三D列印製作不同厚度半圓珠做實驗,結果發現厚度5.5~6.5mm時,拉力從5.27kg降至2kg以內;厚度大於7mm以上時,拉力更降為1.55kg以內,幾乎不卡了,而且以黏貼在「中」位置(椅腳連接片)效果最好。綜合以上,建議厚度7mm以上黏貼在椅腳連接片位置即可達到不卡效果,更建議廠商直接在椅腳內部設計凸面,開模成一體成型的塑膠椅就能解決卡住問題。

水箱滿隔形-探討運水車翻覆因素

運水車翻覆的新聞,讓我們膽戰心驚,為什麼運水車會翻覆成四輪朝天?消防車的水又為何低於半滿水位時,需要漏光比較安全?在五年級自然【力與運動】中,得知物體受力時,運動狀態可能會改變。本研究探討水箱的水重,水箱有無隔間及水箱形狀對運水車行駛時的車速變化影響。透過自製傾斜穩定度檢測器,發現不同水量下,半滿水位的八角柱水箱,所能承受的翻覆角度最小,因為水往低處流,水又比空氣重,造成重心偏移而翻覆;相同水量下,重心最低的三角柱水箱能夠承受最大的翻覆角度。 根據實驗結果發現,裝滿水、有隔間、都可以降低水的搖晃程度,減少水的質心因慣性流動而不斷偏移中心的機會,可以降低車子翻覆的機率。

浮屋減振定錨設計之研究

本研究目的在找出浮屋定錨系統最佳避振的懸吊系統裝置方式。研究發現串接的定錨設計方式,且上重下輕能有效的減少晃動。在水深度不深的情況下,水下的懸掛物越重(但不可超過浮力)、越深,並且放置在與波前垂直的重心線兩側可以減少許多水平方向的衝擊。經過實驗數據的檢視與物理駐波的討論,發現串接的懸吊系統其懸吊物擺放在節點處可以大大的降低晃動。本研究依據物理公式v=√(F/μ)與v=fλ推算出懸掛物的節點位置,實際安裝後減振率達50%以上。振波藉由繫繩傳遞能量,而配重的定錨在節點處提供繩張力並且穩定的振動,利用繩的振動來消耗振波的能量,繩上的浮球可以降低繩張力並增加振波能量的消耗。文末並提出其他減少晃動的可能性建議。