全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

輕功水上漂之驚濤駭浪

水黽在水面上自在地的滑行,就想探索動態水面的表面張力。先設計用懸掛式的方式來測量表面張力,發現寬度愈大,可承載的重量越大,若加計沉陷的壓力差,則表面張力趨於一致。再測量兩根線接近時的承載力,發現距離小於 5mm,承載的重量隨距離的減少而減少,超過後則沒影響。當波前與壓克力板的方向平行時,在波谷時的向上加速度最大,此時水的表面張力不足以拉上壓克力,就會沉沒。波前與長邊垂直,當波浪來時,表面張力將前方向上抬升,後方要往下降,卻受到的表面張力的阻止,所以容易沉沒。推動鋁線快速前進時,鋁線前後方向上分力減少而沉沒。所以鋁線與前進方向垂直的比例愈多,最大前進速率愈小。依此做出表面張力移動底盤。

眼見不為憑~ 探討中央漸層色彩對相鄰色塊視覺及拍照之影響

本研究在康士維錯覺的基礎上,進一步探討中央漸層色彩對其 相鄰色塊影響之行為,並與相機拍照加以比對。首先本組設計不同中央漸層變化圖片,讓20位受試者進行顏色辨識測試,結果發現中央漸層的色彩不僅會對兩側色塊的明暗產生影響,連本身的色彩也會看起來不一樣。再以相機拍攝設計好的圖片,將其存成RAW檔的格式,再以image J程式分析其顏色變化情形,經分析後發現:1、靠近中央亮區一側的色塊確實會變比較亮;2、相鄰兩色塊連接處都會互相包含彼此些許的色彩;3、兩側色塊的顏色會因中央漸層色彩的形式而有所影響,此外、比較兩者結果,具有一致性的發現意謂著康士維錯覺不僅僅只是大腦解讀造成的,還掰和光學及影像處理等問題。

「卡最電」---運用卡門渦街共振進行發電的研究

1.彈性體彈力係數在卡門渦街效應中會變化,代表受力相同下,形變量改變,利用卡門渦街共振發電有節能效果。 2.系統渦街頻率為0.76Hz,測量阻流體後方1倍球體直徑處頻率為0.86Hz,2倍直徑得f=0.79Hz,與理論計算相近,證明有卡門渦街效應存在。最佳的組合直徑4cm、弦切角度30度半球形阻流體,有風時k(彈性係數)=6.61N/m,無風時k=11.46N/m。在6.5cm的彈簧座上,放置射流完全發展階段,距離出風口縱向距離15cm橫向距離3cm(15cm/s)處,共振晃動軌跡為橢圓形。 3.阻流體模組在卡門渦街共振下頻率變小,共振效應有穩定阻流體運動穩定性。 4.卡門渦街發電裝置的發電功率為較課內實驗的發電功率穩定,其體積與質量都較輕巧化,有發展潛力。

魔法懸浮-若隱若「線」

張拉整體結構是透過繩索等提供張力,讓堅固的結構在看似無支撐的狀態下維持懸浮與平衡,實驗中透過在尼龍繩上裝設彈簧,觀察平衡時張力大小,以及外力或移動中心支撐繩位置對於平衡和張力的影響,並嘗試將中心繩換成電磁吸盤,觀察維持平衡所需的電壓範圍。由實驗結果得知:1.平衡時每條繩子的張力大小,會受到結構重量以及質心位置影響;2.從側邊額外施力時結構會傾斜,以曲柄所在的側邊施力影響最小,平衡最穩定;3.移動中心繩會使支點改變,使中心繩靠近的繩子張力變大,整體結構傾斜;4.以電磁吸盤當中心繩時,提供足夠電壓(6V以上)可維持平衡;以上實驗結果可以做為張拉結構的繩索材質、結構設計以及可承受外力的參考。

力拔山河-立體幾何模型與氣體對泡泡薄膜的影響

我們學會使用表面張力儀,也利用天秤自製工具,透過實作驗證溫度影響表面張力,每調製泡泡水皆測液溫及表面張力。將幾何模型由泡泡溶液中提離,模型中出現的薄膜因泡泡液體的表面張力而存在,泡膜間相接觸後會重新分配分子位置利於達穩定且內凹的泡膜型態。不同的速率、不同的方位(點、線、面)將模型拉離泡泡水面,發現點先離開泡泡水的內凹薄膜完整成型率最高,面先離開泡泡水成型率最低,邊數越多的幾何模型中間越不易形成結點或小平面的薄膜。對著泡泡薄膜中間打氣可形成與該模型圖案相近的氣室;可藉由抽氣筒將此氣室內的氣體抽出,並恢復該泡膜無氣室前之型態。若乾燥針尖戳入某一片泡膜,可發現,沒被戳的部分區域的泡膜幾乎可保持原貌。

有「力」可「球」,變化more測

本報告主要針對球體在不同作用力下,影響其行徑軌跡之研究,運用都普勒效應及柏努利定律等概念,設計實驗裝置。為了探討球體水平方向及自由落下垂直方向的運動獨立性,自製3D列印實驗球體 (圓球和橢球體)與球體旋轉軌跡裝置,分別引入水平與垂直氣流進行球體軌跡實驗。透過相機錄製影像與物理實作APP擷取聲音頻譜資料,再運用Tracker軟體進行數據處理。此外,善用磁生電原理,驅動LED光來測得球體轉數。最終,實驗結果發現球體形狀、轉速跟空氣氣流產生不同作用力,都會使得球體產生偏轉,皆符合柏努利定律來進行解釋。

光「纖」亮麗-探討光纖導光性質及照明應用

本實驗主要探討光纖性質及其生活應用。首先,本組測量所使用的光纖規格,接著改變不同變因,以測量損耗值來推斷光如何在光纖中傳輸。實驗後發現光纖越長,因吸收及微彎損耗,損耗值越大,而光纖彎曲角度越大、半徑越小、次數越多皆會因巨觀彎曲而造成損耗值增加;光纖上彎曲位置則是因全內反射、入射角度等造成越靠近入光處彎曲,損耗值越大;溫度對損耗值沒有太大的影響;波長越大則損耗值越大;而入射角度大於最大可接受角10°後,損耗值隨入射角度增加而增加。本組也將光纖用於製作一些照明裝置。一、用集光裝置來聚集光線,並用光纖將陽光導進室內來達到最小閱讀照明亮度的照明系統,二、只使用纖芯以用來製作安全照明裝置和條狀強光照明。

「流」「擺」能生—探究穩定水流中單擺組合擺盪機制與發電應用評估

探究水流中單擺擺盪變因的影響,確認擺盪的物理機制,用於發電裝置優化調控。單擺實驗以動能轉換參數f*X評估效能高低,於實驗中發現阻礙物兩側流速差造成偏移力並產生渦流,若渦流結構完整,說明流速差大,偏移力大。擺長越長,渦流頻率(f)降低且擺幅增大;擺錘直徑增加使f降低、擺幅及渦流直徑增大。流速10cm/s下,最優單擺-擺錘直徑5cm、擺長20.5cm、33.7g。加阻流柱(擺)可降低f增加擺幅;水流速與共振擺長有量化關係。擺盪發電組的圓筒密度接近水時有較佳的發電效益,於不同流速下,改變擺長可調控發電組之震盪頻率使之共振,增加擋板可增加發電組擺幅使發電效能提升。

液滴曲面折光的繞射圖紋探討

利用線香探究光在立體空間的分布,發現圖紋與光線的條數具有相關性的,在不同的角度下產生的圖紋精彩炫麗、美妙驚奇令人驚艷。為了找出圖紋、光線和水滴及介質之間的某些相關觸點,設計了相關性的設計實驗並參考惠更斯原理與繞射原理,比較不同水滴形狀、垂吊方式及改變雷射筆照射位置來觀察圖紋差異,觀察不同角度的光經過同一介質的連續曲面產生的圖紋差異,對產生的圖紋加以解釋。透過這一系列的實驗,發現光經過介質時會因遠近差異、角度、水滴形狀出現折射及反射的美妙圖紋,時而交疊或發散,形成了各式複雜曼妙精彩的圖紋。這些都是本實驗值得探討的研究。

「失」出有名、「速」手就擒 ---探討飛機失速倒轉之條件

為了做出失速倒轉返回的特技飛機,發現發射力量與角度和機身結構都有所互相關係。依據失速最大高度、失速水平距離、返回水平距離,發射角度0度時,可選擇87型;發射角度10度時,則可選擇86型;而設定其他飛行目的則可以發射角越大,倒轉返回百分距比與失速高度越大作為操作參考。重心調整上,13mm長尾夾(1.20g)夾在機頭最前端最為合適 。 風洞試驗方面,88型達最大仰角時間最短,翼刀與翼尖小翼不同傾斜角度形狀,最大仰角約在30度左右,推測飛機形態是受風產生升力的主要影響因素。失速倒轉返回飛行修正方面,86流線型可以提高發射角度與水平高度進行。而87與88寬廣型以水平高度,延長升力達最大值的時間為原則。