全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

煮泡麵「粉」有趣—探究類沸騰現象

粉末的類沸騰現象在烹調過程中常會造成許多困擾!本研究發現許多常見的調味料粉末與麵條都會產生類沸騰現象,此現象應列入生活安全教材,提醒大家在烹調過程中,投入調味料的時機是達成安全烹調的關鍵。首先我們使用imageJ對類沸騰現象進行量化數值,在AI浪潮下,借助ChatGPT,我們完成了類沸騰比值的Python程式碼。研究過程中,我們發現溶液酸鹼性及鍋具蓄熱能力都會影響類沸騰現象,藉由此特性我們利用類沸騰現象來推算溶液PH值,自製PH計,相較於廣用試紙,它可以提供數據資料表達溶液酸性程度;同時,利用類沸騰現象跟鍋具的蓄熱能力相關性,對於一些新型複合材料的鍋具,亦可以利用類沸騰現象進行鍋具蓄熱能力的驗證,理解廣告行銷術語的正確性。

就問你「浮」不「浮」:浮球的穩定性討論

我們利用扭蛋製做單軸、分離式及貫通式雙軸浮球模型,進行海水與淡水的載重與吃水深度、配重位置與傾斜角度、造波和回正觀察。發現載重與吃水深度呈線性關係。不同配重位置明顯影響分離式模型的傾斜角度,重心越低,角度越小。貫通式模型易保持正浮,但重心較高者,正浮不穩定,稍受擾動即傾斜。 在造波中發現浮球呈週期性運動,且浮力最大值在波峰,最小值在波谷,相差可達50%~85%。垂直方向運動速率最大值約在平衡位置,垂直位移最大值<2倍波高。 不同配重位置的貫穿式模型以90°傾斜入水,軸頂到重心的距離(L)決定浮球是否回正。本實驗發現全長16cm的模型,L≥11.42cm者,均可回正,L≤11.17cm者,均無法回正,顯示L越大浮球穩定性越高。

「凌波微步」--- 微波電漿的產生方法及變因之研究

本研究依據「微波電場」造成導體「集膚效應」 的原理,希望探討葡萄在微波爐中產生微波電漿的產生方法及影響因素。過程:進行聚丙烯酸鈉橫截面直徑大小、微波強度、 鋁箔紙角度、線圈間距及線圈圈數等對電漿產生的影響。藉由本研究實驗結果證實:在微波電場中對導體產生的集膚效應,進而激發表面尖端放電進而引發周圍氣體被激發成為離子態進而進入電漿態。而當線圈圈數變多時,會發生短路現象,釋放高溫高熱,使溫度和亮度均升高,但也造成電壓相對下降。我們也進行了線圈金屬材質的實驗,發現鐵(鉛線)因為是磁性物質,因此能夠產生較高能的電漿;漆包線圈因為有機物質可以產生功率較高的電漿。

噪音變樂音~磨鳥笛

摩擦音一向是令人不悅的噪音,經由實驗自製出聲音多變的磨鳥笛;發聲原理不同於販售的數種鳥笛,從磨鳥笛組成要件〜木頭材質、螺絲粗細、紋路、扭力大小、比對鳥叫聲探究: 1. 磨鳥笛要能夠發聲須注意木材硬度、螺絲紋路、螺絲直徑、摩擦角度等特性。 2. 發聲結構體(木材)硬度在600~1800最合適,例如:櫸木、雲杉、松木、桑樹。 3. 螺絲直徑5~6mm,細牙,牙距0.5~0.75cm,深度0.3~0.5cm最適合當作摩擦體。 4. 木材含水量多寡影響聲音有無、高低音及泛音的變化,與螺絲轉動摩擦力大小有關。 5. 改變扭力大小與角度,造成螺絲鬆緊度改變產生不同音頻和音量的轉換。 6. 增加摩擦力可讓磨鳥笛聲音擬真度提高,扭力與振幅成正比。 7. 螺絲深度(h)∝音頻(f),木材半徑(r)∝音頻(f)結果顯示為負相關。

風水輪轉―氣、液兩用特斯拉渦輪發電機設計與應用探討

2050年淨零碳排的目標,全球積極發展再生能源維持充足的能源供應。本研究以廢棄光碟片製作特斯拉渦輪,學習大自然黃金螺線改良;分別以空氣及水兩種流體,比較渦輪轉速效果,轉子採用螺線數量:0條、2條、4條或6條,分別搭配0度、10度或20度入口角度。氣源壓力為1.00kgw/cm2時,採用4條螺線,搭配0度入口,轉速為1735RPM,相較特斯拉渦輪轉速746RPM,轉速提升133%;水源壓力為0.50kgw/cm2時,採用4條螺線流道,搭配10度入口,轉速為657RPM,相較特斯拉渦輪轉速381RPM,轉速提升72%;透過黃金螺線引導,可有效提升低壓流體的渦輪轉速。以氣源帶動渦輪成功驅動輪轂發電使LED燈照明;並對鋰電池進行充電,展示特斯拉渦輪發電效果。期盼可以發展成小型發電裝置並應用。

水花的減緩者

本實驗將掉落物稱為擬便,入水後短暫形成的無水空間稱為空腔。 我們發現水花高度和擬便距離水面的高度成高度線性關係,空腔深度和擬便距離水面的高度也成高度線性關係;而固定擬便距離水面的高度,當水深不同時,水花高度變化不一定和水深正相關。 其次,擬便的密度、先接觸水面端的面積、形狀、突起排列對水花高度的影響並無明確的規律性。 而在改變水溶液性質下,我們發現: 1. 當水面有一層介質時,都會降低水花高度,但水花高度卻和空腔深度呈現負相關。 2. 使用鹽、糖改變水溶液密度時,水花高度、空腔深度隨密度改變情形,兩種溶液並不相同。 3. 改變水溶液黏稠度時,洗碗精對水花的降低效果較果糖好。 4. 水面上有泡沫均能有效降低水花高度。

改善疊椅卡住之研究

塑膠椅疊在一起椅腳間有摩擦力,當拉力小於最大靜摩擦力+椅重就拔不開,因此本研究主要探討椅腳加裝魔鬼氈、市售和自製半圓珠對於疊椅拉力的影響。先以魔鬼氈與市售半圓珠做實驗,發現市售半圓珠降低拉力效果比魔鬼氈好,且半圓珠越厚越多,則降低拉力越多。再來以三D列印製作不同厚度半圓珠做實驗,結果發現厚度5.5~6.5mm時,拉力從5.27kg降至2kg以內;厚度大於7mm以上時,拉力更降為1.55kg以內,幾乎不卡了,而且以黏貼在「中」位置(椅腳連接片)效果最好。綜合以上,建議厚度7mm以上黏貼在椅腳連接片位置即可達到不卡效果,更建議廠商直接在椅腳內部設計凸面,開模成一體成型的塑膠椅就能解決卡住問題。

風到哪裡去了─氣流附壁作用之探討

「附壁作用」是指流體遇到障礙物(例如氣球),流體會沿著障礙物曲面流動的現象,並產生推往流體方向的作用力(氣球的舞動,2021)。於是採邊想邊實驗邊修改的模式來探究氣流附壁作用。研究結果發現: 一、 氣流經過正角柱體時,會沿其側面流動且其底面邊數愈多愈明顯。 二、 氣流流經直圓柱體時,會分為兩股附壁在兩側運動,到了另一端時再匯集成一股往前進。 三、 氣流經過球體所產生的附壁作用,能使球體穩定飄浮,並帶動球體產生偏移。 四、 氣流會從側面有斜度葉片沙漏型圓柱體的縫隙中流出,且附壁在曲面上形成一直環繞的現象。 將氣流一直環繞的特性運用於日常生活上,或許可設計出便利於生活的科技產品。

F1賽車的魅力-Double D 空氣力學套件開發研究

模擬高風速對模型遙控車產生之Double D (Downforce下壓的力與Drag阻力)比值切入空氣力學套件角度研究。下壓的力增輪胎抓地力,轉彎速度增快,縮短單圈時間 (lap time)贏得比賽。我們選取Nissan GTR與F1 Ferrari SF21遙控車,以巴沙木自製單層、雙層(主副翼不同角度組合)、三層共17組尾翼,自製風洞模型、掃葉機風力、2個電子秤同測前後輪下壓的力、拉力計測阻力,發煙機及LED燈拍攝氣流。結果發現尾翼寬度增寬與尾翼攻角越大,可增加下壓的力。阻力與風速平方成正比,相關係數0.94。對雙層尾翼,增加副翼角度比主翼角度更可增車子下壓的力。主翼0∘-副翼75∘造成「總下壓的力變化量/阻力變化量」比值0.78為最大,乃增加穩定度之最佳尾翼選擇。再以3D列印技術製作出最佳主翼0∘-副翼75∘尾翼。

「顯像」環生-環形氣泡產生方法及變因之研究

我們從網路影片發現海豚能夠吐出環形氣泡!對環形氣泡產生興趣後,我們自製以相同力道製造環形氣泡的施力裝置,進行環形氣泡產生方法和變因的探討。我們推薦以空氣砲製造環形氣泡。空氣砲使用3D列印中空圓筒瓶,瓶底包膜以繡框固定矽膠保鮮膜,並以推膜施力。我們以細小氣泡作為顯影顆粒,進行簡易的流體可視化,分析出環形氣泡形成歷程與內部運動軌跡。孔徑、管長和管徑都會影響環形氣泡效果。管徑3吋圓筒瓶最佳化為「孔徑/管徑=1/3、管長20cm」。施力大小與孔徑則會影響環形氣泡直徑。環形氣泡需要氣泡才能現形,我們研發出內塞氣泡石、現形水量方法,讓氣泡現形一體化。此外還發現環形氣泡對撞會有互相抵銷、吸收與後凹抵銷一半現象。