全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

物理科

改變流體速度的通道 – 特斯拉閥

本研究主要針對特斯拉閥的概念自製通道,探討通道擋板以及通過液體對於順、逆流差異進行探討。我們使用車床切割壓克力形成各式通道,並拍攝流體經過的過程、計算流體的順逆流差異。結果發現:以擋板形狀及排列方式而言,交叉三角形的順逆差效果最好;通道寬度則是寬度越寬流速就越快,因此擋板凸出程度越多流速就越慢,且凸出程度越大,順逆差異就越明顯、擋板間距在 2.8 ~ 3.2公分時順逆差異最佳;水溫提高雖有助於提升順逆差,但卻會因流體寬度變窄的影響而效果變差;流體的黏度愈小,順逆差異就愈明顯。

忘「黏」之「膠」—光柵壓印對乾式膠帶效果之研究

因為對壁虎攀爬能力有興趣,我們決定研究不黏手的乾式膠帶!藉由自製穩定施力的檢測裝置,進行乾式膠帶作法和變因探討。 我們發現矽膠最適合製作乾式膠帶,壓印板推薦柵欄結構的光柵。當光柵刻線密度越密,剪切力越大!1000條光柵乾式膠帶(剪切力853 g/cm2)是市售奈米膠帶的2.75倍! 矽膠壓印可達到1µm單位,我們稱為「微米壓印」,是小學生就能使用的技術! 光柵形狀會影響剪切力!訂製光柵太昂貴,我們藉由雷雕「模擬低密度光柵」形狀。 推薦橫向、同心圓及正六邊形,形狀越小越密,剪切力越大。 我們研發出7099和台AB光柵乾式膠帶,擁有不黏手、無殘膠、易剝離、單雙面皆可用、彩虹光澤特性,水洗能恢復黏性、還能當作光柵及二次壓印光柵,具有推廣價值。

借風使舵~氣流飛機任我控

空氣的流動會形成風,藉由起風板前進產生的上升氣流,可推動由保麗龍薄片製作的氣流飛機向前飛行。本研究旨在探討影響氣流飛機飛行速度的因素,分別以手持和類風洞裝置來進行實驗,結果我們發現,氣流飛機在起風板上的最佳飛行速度並非單一速度,而是一個區間。不同起風板角度間有共同的安全飛行區間,若飛行速度控制在共同安全區間內,氣流飛機可在所有的起風板角度上安全飛行。另外,氣流飛機在起風板不同位置也會影響飛行的速度,下半部速度最快,正上方成功率最高,本研究建議將氣流飛機操縱在上半部,結合速度和成功率。起風板兩側折角能修正氣流飛機的偏移,讓飛機回正。若將起風板兩側向上折起30度,則可讓氣流飛機飛得更快且更穩定。

一擺未平,一擺又起—變態耦合擺拍擺動之研究

耦合振盪的現象最早由物理學家惠更斯從鐘擺的振盪發現,本研究探討之耦合擺現象即為耦合振盪現象。實驗在長線上掛上兩條細繩,兩繩分別掛上同質量砝碼,再分析耦合擺運動軌跡;分析得一擺擺動振幅增大時,另一擺則會減少。藉改變兩擺間距和擺長發現:兩擺間距影響兩擺振盪週期,兩細繩同長時,週期隨擺長規律增長。在不同數量的擺中,三擺和五擺透過改變多擺的擺長排列方式,發現各擺間的能量會有不同的轉換,規律因此各自有異。除此之外,我們發現彈簧對振盪的影響與棉繩相似,磁鐵在同極和異極時皆呈現明顯左右規律地晃動情形,振盪軌跡和無磁鐵時不同,振盪週期也會變長。上述變因對耦合擺在各擺間的能量轉換有關。

來自鄒族的科學鳥羽箭-探討鳥羽箭的氣動流體力學與聲學之研究

鳥羽箭為鄒族獵人必須學習重要的狩獵技術,蘊含流體力學知識。經由耆老的指導鄒族鳥羽弓箭製作,發現鳥羽弓箭的確可以增加射程及準確率。接著進行最佳化探討,研究發現如下:(1)製弓要使用4節桂竹,(2)箭長度最佳為使用90公分箭竹,(3)最適合黏貼藍腹鷴羽毛於箭尾,(5)射擊的角度0o與45o有最遠的射程,箭尾增加射程及準確率也可於小型鳥羽箭射擊模型被證實。接著探討藍腹鷴羽毛作為箭羽的優點,經實體實驗及模擬實驗相互比對,發現藍腹鷴的羽毛具有穩定流場的功效,藉由實驗分析圖我們發現藍腹鷴鳥羽相較於其他羽毛有較高的風速,產生自較強氣流,紊流卻可減少,降低噪音。以上特點均可提高獵人狩獵成功率,同時支持原住民族科學也可以被西方科學證實。

管中冷暖,一壓即知~利用3D列印技術探討渦流管之原理

本次研究利用3D列印技術製作渦流管裝置,以利於變因之改變。透過數位式溫度計及氣壓計,可以即時截取數據,並互相比較。實驗中我們發現,當渦流產生室達到一定的氣壓時,就可以產生冷熱氣流分離的效果,而為了讓渦流產生的效果更好,氣流入射角度大約在45~60度間有較好的效果,渦流管的內徑在6~8mm間,長度在12~14cm時較好。當我們將測到的數據進行理論的分析後發現,熱端的縫隙越小,熱端發熱的效果更好,這也可以讓冷端的冷卻效果增加。最後探討數據與理論間的誤差值後發現,氣體受到絕熱膨脹的影響而降溫,使計算出的數據和實驗值產生誤差的主要原因。

溶液深淺長短跑-創新方法精密測量折射率與液體濃度的關係

我們利用一般裝潢使用測量距離的雷射測距儀,配合理論推導,自行設計實驗方法與步驟,成功地精確測量各種水溶液在室溫下的折射率。透過我們的實驗方法與高中光學插針法測量液體折射率的實驗比較,測量誤差比插針法得到的實驗結果小一個數量級。我們還利用此實驗方法精確測量不同濃度的各種水溶液之折射率,探討折射率與濃度之間的線性關係。我們更進一步測量雙溶質水溶液與不互溶的兩液體,發現其折射率皆具有線性疊加的關係。

「船」到橋頭自然直~探討水道船的船速變化

長400公尺,寬59公尺的長賜號(Ever Given)在寬265公尺的蘇伊士運河航行,因偏離軌道而擱淺6天,和岸壁效應有關嗎?在【力與運動】中,學到物體受外力時,運動狀態可能會發生改變。我們透過船速變化來分析螺旋槳的推進力與水的阻力。本研究設計一艘可以遠程遙控並調節3段速度的水道船。且在靜止無風的水面上,利用智慧光閘(smart gate)內建的雷射開關檢測器測量船速,以獲得精確數據。研究發現鈍圓船艏,在水道深度與船的吃水線比值大於4;水道寬度與船的寬度比值大於2.5的情況下,船速不會受到影響。當船速增加,水的阻力也會跟著增加,船隻偏離軌道的情形越嚴重。建議進入狹窄水域的船隻減速航行,可以降低船的動量和慣性,更好操控,也能減少岸壁效應的發生。

「富」二代的秘密─探討鋁箔紙排列方式對富蘭克林馬達的影響

我們研究的內容,主要探討如何提升富蘭克林馬達轉速的組合,並深入探討多樣實驗項目。而我們也將部份實驗的數據繪製成趨勢圖,一來可看出我們的數據是否合理,二來還可看出我們是否真的有找到最高轉速組合。在實驗八,我們就也因此找到了更高轉速的電刷型式,經轉速測量後發現,與原先的趨勢推估幾乎吻合!這更是確定了我們實驗數據的真實正確性與合理性,也讓我們研究結果更完整。總結實驗發現,塑膠杯上鋁箔紙的大小、長度、寬度等,及電刷的寬度、高度、鋸齒數等都會影響轉速,因此我們從實驗結果歸納出轉速最佳的設計,成功設計出穩定且高轉速的富蘭克林馬達。期望在未來掌握富蘭克林馬達重要設計要素之後,能夠更深入探討其更多的應用。

支離破「碎」~探討兩互溶流體間形成碎形圖案之機制

本研究主要想了解兩互溶流體間形成碎形圖案之機制,並找出實驗證據,經由將不同濃度的染色液滴滴到不同濃度的壓克力顏料溶液上,並使用iphone 8 手機以240fps拍攝液滴擴展過程,得知酒精液滴因表面張力小,而向外流動,且因流體間互溶之緣故,造成流速的不連續性(虎皮紋的流痕),而在外圍產生不均勻的堆積(島紋),當堆積過多時,便會發生突破(顯微攝影拍到突破瞬間),而長出手指,同時堆積會由突破口轉移到手指指尖,當堆積夠多時,指尖又會再分裂出新的碎形手指,如此往復下去,就形成碎形圖案。 此外,碎形手指的圖案,跟利希滕貝格圖極為相似,經使用方格覆蓋法,計算出碎形維度約為1.82,與利希滕貝格圖的理論值1.71接近,確實是碎形圖案的一種。