線線危機--矩形截點數之探討
從矩形的左下方出發,探討彈珠經過反彈所形成的截點(直線重複交錯於矩形的格子點)數量。討論不同長、寬的矩形分別走1 格(1,1)、2 格(2,1)及3 格(3,1)的情形,從圖形及表格的歸納整理中,得到可以利用矩形的長、寬計算出截點的數量的公式,簡要敘述如下:一、 長×寬為偶數×奇數時,截點數量=(長?1)×[(寬?1)÷2]。二、 長×寬為奇數×偶數時,截點數量=[(長?1)÷2]×(寬?1)。三、 長×寬為奇數×奇數時,上述兩個公式都可以使用。過程中發現截點數量除了與矩形長、寬有關之外,也與所走格子數之水平移動量及鉛直移動量有關。另外搭配圖形的放大縮小不影響截點數的想法,可以很快的由矩形的長、寬及所走格子數之水平及鉛直移動量計算出截點數。