全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

國中組

「塑」戰「菌」決——探討小蠟蟲腸道菌對塑膠微粒的吸附及降解情形

本研究探討小蠟蟲(Achroia grisella)腸道共生菌對塑膠微粒的吸附與降解潛力,成功分離出30株可穩定培養菌株,並針對常見塑膠(PET、PP、PE、PLA)進行吸附與降解分析。結果顯示,菌2與菌5能有效吸附PE與PLA微粒,其中菌5在PLA條件下展現快速酸化與 CO₂ 釋放現象,顯示具備生物降解能力。進一步證實其在無碳源條件下仍能附著塑膠表面,顯示其可將塑膠作為潛在碳源。此外,菌株處理後之PE微粒對水蚤毒性下降,心跳與存活率回升,推測與毒性添加劑去除有關。本研究亦觀察到菌體對塑膠表面具專一性吸附,對金屬顆粒無附著現象。綜合實驗結果,菌株5具高穩定性、廣效吸附與降解潛力,未來可應用於塑膠污染治理與生物回收領域。

人工智慧 A Eye 行人守護星-禮讓行人號誌燈的探究與實作

為降低車禍發生率並改善行人穿越馬路的安全問題,我們設計出結合人工智慧影像辨識技術的「禮讓行人號誌燈」系統。透過Pixel:Bit開發板的攝像鏡頭進行行人偵測,系統能有效辨識人類與其他物體的差異,當偵測到行人經過斑馬線時,上方的黑色螢幕會亮起警示燈,同時地面斑馬線也會發出燈光提醒,讓駕駛提前注意,主動減速禮讓行人。我們先透過測試不同距離的偵測條件,建立模型,接著模擬實際馬路情境,進一步優化設計。本研究除實作硬體裝置外,也結合AI協作程式,實現完整功能的原型系統,期望能應用於未來智慧交通建設中,提升用路人安全與行人通行品質,讓人工智慧A Eye禮讓行人號誌燈守護你我安全,讓「行人地獄』的惡名不再有!

AI災後現場守護通

本研究針對2024年花蓮地震後災難現場人員管控問題,開發「AI災後現場守護通」系統。研究動機源於觀察到非救災人員擅闖管制區域,危及自身,更影響救援效率。本系統採用Google Gemini API進行影像辨識,透過Arduino開發板整合攝影模組,即時辨識救災人員與非救災人員,並透過LINE BOT發送通知。 研究分兩代系統開發:第一代使用NMK99開發板,日間準確率達86.7%,但夜間僅64.4%;第二代改用AMB82mini開發板,增強夜視功能與離線警報(LED燈+蜂鳴器),日間準確率提升至94.4%,夜間達85.6%,整體平均90.0%,反應時間在3秒內。 本研究創新結合AI視覺辨識與物聯網技術,建立零訓練即可部署的災後管理系統,不僅適用於地震,亦可延伸至其他災難場景,為災難管理提供科技解決方案。

問君哪得清如許~探討永續節能自動化水質檢測及淨化的可能性

水質同時受到有機染料與無機鹽類污染,現行處理流程常分段進行,能源又受天候限制。為此,本研究開發一套整合「即時檢測-自動啟動-光觸媒淨化」的太陽能驅動水質清淨機。分別以有機染劑的亞甲藍以及無機鹽類的磷酸鹽(優養化)、亞硝酸鹽(生物毒性)為污染代表,檢測儀使用Arduino以反應試劑的RGB顏色變化檢測,汙染濃度超標則啟動水質清淨機進行降解。清淨機利用二氧化鈦光觸媒來淨化水質,作動結果顯示在光觸媒的作用下,不同的污染物濃度均能大幅下降,達成水質清淨目的。在能源的利用上,採用太陽能板儲能以提供陰天、夜間光觸媒所需的紫外燈電力,有效解決除污的時間及天候限制,達成全天高效水質淨化,符合節能等永續理念,值得大力推廣。

透過不同時間太陽觀測計算影響折射率之大氣層厚度

本實驗發現在加入了觀測仰角後只要測量得出觀測的時間的太陽形變,不限於夕陽,即可推算出影響光線折射率的大氣層厚度此為本研究的貢獻之一。實驗中拍攝大量不同的日期與時間的太陽形變照片,並將計算結果統計分析後,得知此推算方法是可被成功驗證的。實驗中制定了每個步驟的測量方法,經由拍攝太陽形變照片,查詢觀測仰角高度,並配合大氣折射的運用,即能代入公式來推算出影響折射率之大氣層厚度,此為本實驗的貢獻之二。

巢居穴處—蟲菌穴分布特性與影響因素分析

為了解蟲菌穴分布特性與影響因素,我們以四十種木本植物為研究對象,先觀察各種葉片是否有蟲菌穴及數量多寡、歸納出六種類型、確認內部構造,並確認穴居生物以螨類為主;再分析親緣關係、不同脈型的影響;最後探討不同葉片大小、樹冠層高度及內外層、葉片成熟度等因素對蟲菌穴數量及型態的影響。結果發現,並非所有木本植物有蟲菌穴,脈型的影響較親緣關係明顯。平行脈都沒有蟲菌穴;側脈有較多分岔,蟲菌穴數也較多。種間葉片面積大小與蟲菌穴數無明顯相關。但小葉欖仁和茄苳的主脈長度與蟲菌穴數量皆呈顯著正相關。樹冠層越高、越外側,則蟲菌穴數越少。茄苳幼與成葉的蟲菌穴數也有顯著差異。茄苳葉在不同時期及不同部位的蟲菌穴型態都不相同。

眾樂樂合成樂團

本研究透過運用AI技術輔助程式設計聲音合成器程式,以探索聲音波形生成與觀察分析聲音頻,實驗透過不同波形振盪器,並調控ADSR參數,與濾波器組合,我們用不同的合成方法,獲得各類樂器聲音的最佳合成參數,再以先前完成的自製樂器加以改進,透過Arduino偵測串聯電阻分壓電路傳遞琴鍵按壓的演奏訊號至電腦,再經由合成器運算合成輸出對應的樂音,藉由選定不同樂器模組實現樂團合奏。在研究過程中,為解決電腦端即時運算合成音色的耗時問題,我們預先合成並暫存不同樂器音色,提升演奏時的反應速度。最終,本研究在開源程式與AI的輔助下開發出一套支援多人即興演奏的音樂合成器系統,提供創新的音樂創作與演出方式,降低傳統樂器練習的成本與噪音問題。

『蒸』仙!?〜探討仙人掌角質層厚度及刺座與蒸散的關係

本實驗想了解仙人掌角質層厚度和刺座是否對蒸散有影響,結果顯示,刺的長度、數量及密集度與仙人掌的表皮厚度和平均氣孔數有關,刺越長越密集,平均氣孔數越少,表皮厚度越薄。而仙人掌表皮厚度越厚越耐熱,刺越密集越能遮擋光線,可以減少強光的傷害,故刺越密集越耐曬。仙人掌的刺有被紅墨水染色,是由於毛細現象所導致,本實驗中的蒸散量大致呈現有刺大於無刺,而除去刺之後蒸散量下降是由於減少了刺的蒸發量所導致。仙人掌的含水量占其重量80%以上,其莖部有大量的海綿狀組織,可能跟仙人掌針對乾燥環境的適應性有關。蒸散量需要考慮表皮的氣孔總數及表皮厚度,有刺的仙人掌蒸散部位會比無刺仙人掌多,故刺越密集蒸散量就越大。

雙翅目昆蟲背部朝光反應(DLR,dorsal-light response)應用於捕蚊燈設計之研究

本研究探討雙翅目昆蟲(蚊⼦)對光源的「背部朝光反應」(DLR,dorsal-light response)在捕蚊燈設計的應用。根據2024年Fabian等⼈研究,昆蟲依賴光源調整飛行姿態,若光源位於下⽅,昆蟲可能翻轉墜落。因此本研究嘗試調整光源與電網相對位置,藉以了解捕蚊效率差異。更製作同時具垂直與水平網的雙電網捕蚊燈與僅有垂直網的單電網捕蚊燈進行⽐較。 研究結果顯示,垂直網與水平網的捕捉數量比例為2.57:1。⽽加裝水平網的雙電網捕蚊燈平均收集量為0.338克,單電網捕蚊燈為0.115克,重量比為2.94:1。本研究僅透過優化光源與電網的排列方式,即可提高捕蚊效率,可直接應用於病媒蚊控制。

探討影響跳舞草側葉擺動的機制

本研究以跳舞草與動物互動的演化關係,探討影響跳舞草側葉擺動因素,了解其小葉擺動背後的機制與生物意義。我們針對光照、音頻、溫度、電流干擾及大葉處理等條件進行實驗設計,亦使用自製的植物電壓感測器測量電位變化。結果顯示,跳舞草小葉在溫暖、光照充足、高頻音環境條件下,擺動速度加快、振幅增大。進一步分析顯示,小葉擺動與葉枕的電位變化有相關,且外加電流會干擾使其擺動速率變慢。大葉遮光會降低小葉擺動速率,而摘除大葉則會提升擺動速度。綜合實驗結果,推測跳舞草的擺動機制除受環境影響外,也是一種生物演化策略,用以模擬昆蟲活動以吸引掠食性動物,有助於驅離害蟲。且進一步揭示跳舞草葉片運動的電生理基礎與可能的生態意涵。