結合LSH及知識圖譜改善RAG
本研究透過結合局部敏感雜湊(Locality-Sensitive Hashing, LSH)與知識圖譜(Knowledge Graph, KG)以改善檢索增強生成技術(Retrieval-Augmented Generation, RAG)在檢索的時候難以在精確度與效率之間取得平衡的問題。透過使用LSH 將資料分桶,接著利用知識圖譜進一步篩選資料,以提高檢索的精確度與效率。 實驗結果顯示,結合知識圖譜與LSH後的系統,在精確度(precision)上可達到91%,相較於VectorRAG 的84%提升約8.33%,與GraphRAG的96%則僅有5.21%的差距。此外,本系統在檢索時間上較GraphRAG降低了95.38%。由此可以證實,透過結合LSH及知識圖譜能在保持高精確度的同時,顯著提高檢索效率。