全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

第65屆--民國114年

“肝”阿捏!LPS如何“肝”擾粒線體自噬?

脂多醣 (Lipopolysacchatide, LPS)是由格蘭氏陰性細菌所產生的一種內毒素,存在於細菌莢膜中,即細胞膜的最外層,在細菌死亡後,細胞壁被破壞,LPS才會被釋出。其具有維持細菌外膜以及誘發宿主細胞產生免疫發炎反應的功能;此外,近年來的研究也指出脂多醣會影響宿主細胞內的粒線體生合成,且與許多人類疾病的發生有關係,例如敗血症、神經退行性疾病、代謝失調、和肝臟疾病。 本研究將探討脂多醣和肝臟疾病的關係,透過研究經建立表達不同粒線體自噬相關報導基因之人類肝癌細胞株(Huh-7),了解脂多醣對肝臟細胞內粒線體自噬機制的影響,以及該影響與引發肝臟相關疾病的關係。希望本研究可為失調性粒線體自噬引發之肝臟疾病的治療開闢嶄新的方法。

以光反射法放大氣球膜的共振模態

本研究以堅固的圓形筒套上氣球膜或是奶粉蓋後,貼上鏡片反射紅光,觀察不同振動頻率下的光線圖案。本研究的實驗方法,能初步解決氣球膜不易觀察共振模態的問題,並在過程中發現,反射光的圖案多數是呈現直線的,推測可能是同心圓共振膜態反饋的結果。

不要色色一探討活性炭吸附色素的原理

本研究探討各變因對活性炭吸附鐵氰化鉀與甲基藍能力的影響。我們以自製光度計取代價格昂貴的分光光度計進行實驗。實驗結果顯示:莫耳濃度愈高,透光度愈低;活性炭對甲基藍的吸附效果優於鐵氰化鉀,且吸附量隨濃度增加而提升;活性炭質量愈多,透光度亦愈高;溫度升高則會降低吸附能力。此外,應用活性炭吸附色素的原理製成色譜,並結合紮染技術染布,展現科學與美感融合成果。本研究以透光度與莫耳濃度的關係為分析依據,並探討兩物質的化學性質與吸附原理,期望為吸附應用提供實驗依據與啟發。

消波~快!2.0

延續去年的實驗做進一步的改善與測試,這次我們新增浮動式的消波塊觀測其消波的情形,實驗過程中,在無精密儀器下觀察波速與波高,是一件令人感到棘手之事,所幸目前影像分析技術大行其道,因此本實驗的觀測資料均由電腦影像分析輸出並整理。固定式消波塊的實驗結果蠻符合我們的預期,能以簡單的消波塊結構達到消波的功能,實驗數據顯示出原本岸邊的最大波高,可銳減至原有的三分之一左右,效果驚人,真的是消波~快!反之,浮動式消波塊的結果與預想有一段落差,最大原因是消波塊隨著液面升降,上方無足夠的水體產生足夠大的水壓,因此無法順利引導水流通過洩壓裝置,導致消波結果不如預期。

從雞爪定理發想

本研究發想自常見的競賽解題工具「雞爪定理」──三角形內心與三頂點構成的子三角形之三個外心落在其外接圓上。我們將條件更換為垂心和外心,關注連心線三角形,驚喜發現外心與垂心構圖具有巧妙關聯性!值得一提的是,其本質是三圓交於一點,隨後再將三圓交於一點進行一般化,利用此工具解決了2024 年加拿大數學雜誌的一道題目。我們將外心、垂心推廣成任意等角共軛點,利用反演變換證明七圓交於一點,此交點恆在原三角形的外接圓上,再利用連心線與公弦互換,給出四個連心線三角形的關聯性──相似與透視。最後迭作連心線三角形,得出其循環相似性質。整體而言,我們創新了研究項目,循序漸進刻劃出獨特且有趣的結果。

有趣的同心三角形

本研究從著名的歐拉三角形公式出發,我們將圓內接同內心三角形,推廣至圓內接同重心三角形和圓內接同垂心三角形。有關同重心與同垂心三角形的存在性與作圖範圍,我們巧妙利用原三角形的九點圓來進行刻劃!再將研究項目放在同心三角形的邊的包絡線,我們先給出其焦點,再用純幾何方式來證明銳角三角形時,其包絡線為橢圓;鈍角三角形時,包絡線為雙曲線;直角三角形時,則是退化為垂心與外心。值得一提的是,本研究進一步整合同內心、同垂心、同重心三角形,發現面積成等比之關聯性。最後考慮將圓內接改成圓外切的同心三角形,這個難度提升很多,我們成功利用奈格爾線來處理這個研究項目,它顯著不同於圓內接同重心三角形。

心心相連—探討五線繪製三角形的性質

本研究使用幾何繪圖軟體,利用五條直線繪製至少三個三角形,進而探討這些三角形的相似、全等、五心與內部結構,分析其中存在的數學規律或幾何性質,主要探討為三角形的五心共線和重疊問題。本研究發現,五條直線有一定規則才能繪製出三到五個三角形,且特定畫法的三個相似直角三角形的外心會共線、四個相似或全等三角形的垂心會重疊、三到五個相似或全等三角形的旁心皆會共線或重疊。

榕樹葉裡的鑽石-探討鐘乳體的形成與應用

本研究針對校園榕樹植物葉片中的石囊細胞、鐘乳體,探討其結構特徵、物種差異、發育過程、環境影響與中和酸雨的潛力,並使用ImageJ進行測量、量化分析。首先,顯微觀察不同榕屬植物的鐘乳體結構差異、不同年齡葉子的鐘乳體發育過程。接著探討不同環境因子對鐘乳體形成的影響。最後,測試不同榕樹葉片對酸雨的中和效果,探究榕樹枯葉促進小白菜種子發芽與生長的效果。結果發現,鐘乳體要到半成熟葉才發育,到老葉就發育完整;不同的土壤酸鹼值、光照強度與光合作用,會影響鐘乳體的形成;利用鹽酸溶解和鈣濃度測試,驗證其成分為碳酸鈣。本研究提供鐘乳體形態、品種差異、發育過程與生理功能的深入理解,並探討其在環境保護上的潛在應用。

探討影響跳舞草側葉擺動的機制

本研究以跳舞草與動物互動的演化關係,探討影響跳舞草側葉擺動因素,了解其小葉擺動背後的機制與生物意義。我們針對光照、音頻、溫度、電流干擾及大葉處理等條件進行實驗設計,亦使用自製的植物電壓感測器測量電位變化。結果顯示,跳舞草小葉在溫暖、光照充足、高頻音環境條件下,擺動速度加快、振幅增大。進一步分析顯示,小葉擺動與葉枕的電位變化有相關,且外加電流會干擾使其擺動速率變慢。大葉遮光會降低小葉擺動速率,而摘除大葉則會提升擺動速度。綜合實驗結果,推測跳舞草的擺動機制除受環境影響外,也是一種生物演化策略,用以模擬昆蟲活動以吸引掠食性動物,有助於驅離害蟲。且進一步揭示跳舞草葉片運動的電生理基礎與可能的生態意涵。

複合槲皮素奈米顆粒提升難溶性化合物之抗氧化能力

槲皮素(Quercetin)為天然黃酮類(多酚類),具有抗氧化、抗發炎、增强免疫力等功效。但因其水溶性很低,不易讓人體有效吸收,常需吃過量試劑,有浪費情形。本研究利用聚乙烯吡咯烷酮(PVP)、羥丙基-β-環糊精(HPBCD)與槲皮素進行複合,提供奈米製程化並增進其溶解度。在增加PVP K30比例下,複合試劑粒徑可從1200nm降至約30-40nm,形成奈米粒子。與原槲皮素抗氧力比較,複合試劑可提昇40-50倍以上。最後,複合試劑在發泡顆粒劑型可以在30秒內溶出90%以上的成份。以上實驗,說明本實驗能有效增加其溶解效能與奈米化,有效提升槲皮素從原先難溶、難吸收的情形,變為可讓人體快速吸收的粒形。