AI’S A IS FOR APPLE 基於人工智慧影像辨識之水果品質辨識及分類
本研究開發了一種基於影像辨識的水果品質分類系統,採用最適合同時處理局部及全局資訊的 Swin-Transformer 模型,透過分析水果外觀來判斷其品質,並多次實驗以調整參數、訓練多個模型以辨識不同水果種類與品質。 使用者上傳水果影像後,系統即能識別水果種類和品質,並提供新鮮度建議與食用方式。此系統相較於傳統的檢測方法,具備非破壞式檢測優勢,且降低成本,適用於農業生產與消費市場。 模型測試結果顯示,水果類型分類器準確率為99.0%,蘋果品質分類器為85.04%,橘子品質分類器為97.67%,顯示該系統在分類與品質評估上具有較高的準確性,對水果檢測及提升食品管理有重要意義。