全國中小學科展

依全國中小學科展屆次查詢

依相關評語查詢

地球與行星科學科

探討不同型態的海底峽谷對底棲動物群聚結構的影響

深海複雜多變的環境因子塑造了多樣的生態棲地,海底峽谷便是其中之一。全球 9000 個海底峽谷涵蓋了大陸斜坡總面積的 11.2% (Harris et al., 2014),其中有 6 個峽谷分佈在臺灣西南海域。由於海底峽谷型態多樣、地理特性各異,本研究結合作者出海採得的樣本與國內海洋研究所的採樣資料,對西南海域高屏與枋寮峽谷的底棲動物群聚結構進行探究。 本研究應用生態統計分析兩峽谷與大陸斜坡的環境與生物群聚差異,發現除了海底峽谷環境有別於周遭斜坡外,兩型態不同的海底峽谷亦具有顯著的環境與生物群聚差異。食物量與環境擾動強度對兩峽谷間的生物群聚差異貢獻最大,其對應的環境因子(有機碳含量與透光度)有潛力作為未來區分具有不同生態結構的峽谷的主要依據。

各種控制因子對雙漩渦互動的影響

本研究透過水工實驗模擬實際雙颱系統並繪製出軌跡圖,以探討颱風中心距離、相對強弱,以及太平洋高壓的環流等控制因子如何影響雙颱系統,並對漩渦的結構進行了定量分析,以增加模擬結果的可信度。 研究結果顯示,上述三個因子皆對雙颱系統的交互作用有著重大影響,其中,當兩颱風中心距離越近,其受彼此駛流影響發生互繞的情形也越明顯;當兩颱風間有強度差異時,較強颱風的繞行軌跡曲率半徑會較小,反之亦然;在模擬中加入太平洋高壓的作用時,雙颱系統的運動軌跡則可視為上述結果與高壓造成之共同西向運動的疊加。

面面俱到-利用震源分布建立斷層面

為了降低鑽探所耗費的資源和資金,我們開始思考如何運用低成本的方式去呈現地底下的世界,發現可透過地震震源迴歸出板塊隱沒帶,萌生出運用地震震源計算斷層平面的方法,因此我們用「2018/02/08吉安地震」、「2022/09/17關山地震」、「2022/09/18池上地震」、「2022/09/18富里地震」、「2022/06/25 光復地震」、「2018/02/06花蓮地震」這六個地震為參考資料,並且使用Python-sklearn中的LinearRegression函數建立線性迴歸模型且使用 fit 函數對模型進行訓練,最後用3D列印的方式呈現出花東縱谷與中央山脈斷層的差異,可發現兩斷層皆為南北走向,花東縱谷斷層的角度為68-54度,且由北到南傾斜角度漸漸趨緩,但皆為東傾,而中央山脈斷層則為西傾,角度皆在60度左右。

探討各類型焚風之特性及其成因

本研究初探1961~2020年東部高溫事件時,發現中央氣象局歷史最高溫事件列表中,臺東創高溫紀錄多為焚風所造成,便欲深入探究。首先利用大氣水文研究資料庫提供之各測站數據,篩選出臺東、花蓮及臺中之焚風事件,並依焚風類型、時期、不同地區等因素作分類,比較並探討其成因。 經研究可知,三地區的焚風類型多為非伴颱焚風,且臺中地區發生次數最多;伴颱焚風則是臺東地區的發生次數居冠。此外,臺東的各類型焚風於各時期之平均持續時長皆為三地區最長。不同類型焚風於各地區發生次數及持續時長之差異,與臺灣附近之天氣系統存在密切關係,故隨著各時期天氣系統的變化,影響亦隨之改變。

利用校園望遠鏡與LCO所測得的星團星色星等圖求星團年齡

本研究使用校內望遠鏡(14-inch)拍攝英仙座的雙星團NGC884、NGC869及后髮座的球狀星團M53,並申請LCO的望遠鏡(16-inch )拍攝同為北半球后髮座的球狀星團M53以及位於南半球天體Grus II、Tuc II的潛在星團,繪製出其星色星等圖(Color-MagnitudeDiagram,CMD)並分析之,得出英仙座雙星團的年齡皆約在107年之間,兩者實際年齡相近;而南半球天體Tuc II的CMD以等年齡擬合後似乎有個趨勢,假設此趨勢為真,推測其年齡相常年輕,約千萬年的數量級,可能是麥哲倫星流的物質所誕生。在M53的部分,比較本校天文台和LCO申請排程的望遠鏡拍攝出的數據,得出在北半球的部分LCO的降噪比較差,測量誤差稍大。

偷電不著蝕把鋁?海洋環境因子與防腐

臺灣海洋環境因子與腐蝕速率相關重要性依序應為流速、鹽度、溫度、溶氧量及酸鹼值。流速以台中港數值較大且變動大;溶氧量以基隆港溶氧最低,其餘四港口溶氧量在水深6m內為正常值;海水溫度以高雄港均溫為最高與其緯度位置有關;海水之pH值與腐蝕速率較無關係;海水鹽度以花蓮港變動較大,其它港口變化約為21~32 0/00。金屬腐蝕速率以碳鋼最快且大於銅、鋅、鋁,碳鋼腐蝕速率應為台中港、基隆港>花蓮港、高雄港>金門港。海洋環境的防腐蝕法可利用太陽能板之陰極保護法及考量天候狀況與加裝合適電子元件之線路設計來得到一合適電流不致使造成電解水而生成O2。抗腐蝕實驗中其電解質溶液顏色變化及沉澱物一併考量可為腐蝕速率之另一種新型測量方式。

洞察號探索-火星非地震訊號分析

洞察號自2018年登陸火星,累積了大量的震動訊號也高頻率採集持續性的天氣資料。本研究以分析非火星內部地震引發的震動訊號為主,找出天氣變化對非地震訊號的影響,或其他可能引發非地震訊號的因素。以Python進行資料分析後顯示無論白天或黑夜,2~7 Hz頻率範圍會出現數個峰值,比對風逐時變化得知除2.4 Hz的訊號外,大多數是地表以上的風引起登陸器或太陽能面板搖晃導致。在季節變化方面,SEIS於火星夏季夜晚記錄到的震動訊號相對白天少,應該是夏季白天受熱對流旺盛使擾動多,導致非地震訊號頻率頻繁。而火星冬季受沙塵影響,夜晚的非地震訊號與白天差不多,甚至超越白天,同樣在2~7 Hz出現數個峰值,但強度不同。

百「折」不屈 - 大氣折射對日照時長影響

本研究加入各種考量計算,以得出最接近實際白天時長的的數據。首先假設地球為正球型,計算出未考慮大氣的理論白天時長,並考慮太陽視角導致的誤差,可進一步得出蒙氣差數值;第二步考量大氣偏折,將大氣拆分成密度不同的大氣層,討論由太陽射向地球的光,利用Google試算表計算出日光和地表的相切處,再將此數值代入日照時長公式,即可縮小和實際情況差距;最後和各國真實白天時間比較,繪製理論與實際情況關聯的散佈圖,可知實際與理論日照時長僅存在些微差距。結果中的些微誤差,推測為未考慮地球之橢圓形狀以及大氣中不同層的複雜變化所造成,可作為未來改進方向。