搜尋結果
查詢 the共找到 1526筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

Direct reductive amination of camphor

Terpenoids are an irreplaceable class of natural products. The camphoryl group is an important moiety in the structure of chiral ligands for asymmetric synthesis catalysis or it can be used as an auxiliary group in asymmetric synthesis.[1] The usage of fenchone based molecules for asymmetric catalysis and synthesis is less common because of the difficulty of fenchone modifications due to steric hindrance. Camphor is a readily available starting molecule for the preparation of different compounds with biological activity. For example, camphor diimines demonstrate antiviral activity.[2] Fenchonyl amine-based molecules are potential therapeutic agents for the treatment of Alzheimer’s disease. Amines are a crucial class of organic compounds with multiple academic and industrial applications. There are a plethora of synthetic approaches towards amines synthesis and modifications, reductive amination being one of the most powerful and useful methods. However, the reductive amination of camphor and fenchone remains a challenge. A standard approach to reductive amination with amines other than ammonia and methylamine includes two steps: preparation of azomethines or Schiff bases in the presence of strong Lewis acids and their reduction with more or less conventional reducing agents. The synthesis of fenchonyl amines is even more challenging. There is no universal approach, and almost every manuscript reports some particular protocol different from others. In most cases, the first stage of this process requires quite harsh conditions. For example, the preparation of a Schiff base from camphor and 1-phenylethylamine requires 5-10 days of heating at 150°C.[3] Schiff bases of other primary amines could be prepared under similarly harsh conditions. Preparation of enamines is possible using titanium tetrachloride as a catalyst. The reduction also might be challenging. Sodium borohydride or sodium cyanoborohydride was described as suitable for this goal in several reports.[4] To the best of our knowledge, no papers describe any general approach for the direct reductive amination of camphor or fenchone. There is only one example of camphor direct reductive amination without an external hydrogen source using carbon monoxide as a reducing agent. This protocol is very efficient but its application is limited by the necessity of carbon monoxide and high-pressure equipment for the reaction setup.

> 更多

科展作品檢索

(Alternating Rotational Conversion) Generator

ARC Generator is a acronym for Alternating Rotational Convertor. The purpose of the generator is to convert rotational motion into an alternating current. What makes this generator unique from other generators is that it uses a combination of aspects from rotational as well as linear generators. The A.R.C Generator is a experiment to generate electricity in new ways, potentially opening new doors in the area of electrical generation. The final goals for the ARC Generator project are to: 1. Make a electrical generator that is unique compared to other types of generators. 2. Make a hydro power based generator that is simple as well as affordable for private use. The generator itself is split into four distinct parts: • The channels • The inner chamber • The core • The coils

> 更多

科展作品檢索

The change in NaCl crystals from cubic to octahedral~Sodium polyacrylate stabilizes the {111} face of Miller indices~

When adding 2% or 4% sodium polyacrylate as habit modifier, standard milky-white octahedral NaCl crystals grew gradually in saturated NaCl solution on the bottom of the container. [1] [2] Sodium polyacrylate is well known as a highly water-absorbable polymer with many carboxylate anions. In the case of low concentration (0.01%, 0.02%, 0.05%, 0.1% and 0.5%) sodium polyacrylate many small or microscopic crystals whose shapes were nearly octahedrons and had {111} faces were observed with an optical microscope on the bottoms of the solution containers. In low concentration sodium polyacrylate, octahedral NaCl crystals made up of electrostatically unstable {111} faces grew similarly to crystals in high concentrations of 2% or 4% NaCl. Therefore, by adding sodium polyacrylate to saturated NaCl solution, cleaved rock salt crystals in this sol were observed to find out whether or not a change in crystal morphology from cuboids of {100} faces to octahedrons of {111} faces would occur. Regardless of the sodium polyacrylate concentrations of 0.01%, 0.02%, 0.05%, 0.1%, 0.5% and 2%, all cuboid crystals changed into a pyramidal shape in which four of the side surfaces formed an equilateral triangle. When one side of each equilateral triangle face was rotated so the square face of the crystal was soaked in the NaCl sol, all crystals grew into octahedrons of high transparency. Sodium polyacrylate, even under a low concentration, caused morphological change in the NaCl crystals. Many carboxylate anions in the sodium polyacrylate attracted sodium ions and the repulsive force between the carboxylate anions became weak, excluding the water in the internal space of the polymer. We considered that the stabilizing {111} faces of gathered sodium ions attached to carboxylate anions. Chloride and sodium ions coordinated continuously to minimize the NaCl surface area, growing into an octahedral and lowering the surface energy of the NaCl crystal. [3]

> 更多

科展作品檢索

A 100% Solar Electric Vehicle: Applying high efficiency solar modules in sustainable transport

As our planet suffers the effects of climate change, it is only a matter of time before society will have to centre all aspects of development around sustainability. In the past, clean solutions for transportation have been dismissed due to the higher cost, and lower efficiency than fossil fuels. However, in the past few decades, there has been a steep decline in solar module cost, and and a steady climb towards higher efficiency. From my findings in this project, I have concluded that we are now at a point where we can embrace the clean, renewable potential which our sun offers. I have created and tested a proof-of concept electric vehicle (Solar EV), which can run indefinitely during daylight hours, provided sunny conditions. There are several mechanical features of my project which highlight the potential that renewable energy in transportation can have. Firstly the vehicle’s 500W motor is powered by 3 100W solar modules, and 3 50W modules, for a total of 450W or power generation. This means that when driving at anything less than 90% throttle, the Solar EV can run continuously without needing to stop to charge or refuel. Another design mechanism installed in the vehicle are three 12V lead acid batteries. These batteries allow the Solar EV to be powered for over 1.5 hours, which is useful during cloudy conditions, night, and most importantly, when driving through areas of shade. A unique efficiency component designed into my vehicle is the linear actuator I installed into the module racking system. This design element allows the tilt of the modules to be altered, to maximize the efficiency of the solar module array. At early or late hours of the day, it can be heavily tilted with the press toggle switch, or kept at a relatively flat level when the sun is the highest in the sky. I ran a series of trials to figure out whether or not the theoretical data matches up with the experimental results. After my series of trials, the bike was yet to run out of power. The solar vehicle reaches speeds up to 32 km/h, however comfortably glides at around 25 km/h. The linear actuator I installed allows the solar modules’ tilt to change . During different times of day or year, the sun is at different heights in the sky, however it is very important to maximize the solar potential. With the press of a switch, the module can be actuated to account for this. Lastly, regenerative braking captures the energy from braking. Using the reversible nature of a DC motor with a specialized motor controller responding to feedback from the brake actuators allows the vehicle to reuse energy that would otherwise be wasted as heat.

> 更多

科展作品檢索

TCA cycle perturbation induces renal mitochondrial dysfunction and enhanced oxidative stress in diabetic nephropathy-1H NMR-based untargeted metabolomics analysis for potential biomarkers and the effe

本研究藉由基因誘導之第二型糖尿病小鼠(Male B6.BKS-Leprdb mice; db/db mice)做為動物模型,並利用氫質譜儀與代謝體學之平台(1H NMR-based untargeted metabolomics)了解第二型糖尿病所導致的腎病變之疾病進程中的代謝途徑變化,及白胺酸的介入對於疾病進程的影響。研究發現,三羧酸循環及支鍊胺基酸代謝途徑中的代謝物,在基因誘導之第二型糖尿病小鼠尿液中有顯著下降,此發現指出糖尿病腎病變所造成的粒線體能量代謝功能下降。在肝臟組織萃取中,脂化膽固醇(esterified cholesterol)的上升及 β-胡蘿蔔素(β-carotene)、維生素A(vitamin A)及維生素A酸(retinoic acid)的下降顯示肝臟產生脂肪肝及其氧化壓力之上升。白胺酸的介入對於減緩腎臟粒線體受損及降低脂肪肝與氧化壓力並無顯著功效,此現象可歸因於支鍊胺基酸啟動mTORC1代謝途徑。本研究所標定之代謝物可被應用於第二型糖尿病及其所導致之腎病變的生物指標。

> 更多

科展作品檢索

Satellite Modeling of Wildfire Susceptibility in California Using Artificial Neural Networking

Wildfires have become increasingly frequent and severe due to global climatic change, demanding improved methodologies for wildfire modeling. Traditionally, wildfire severities are assessed through post-event, in-situ measurements. However, developing a reliable wildfire susceptibility model has been difficult due to failures in accounting for the dynamic components of wildfires (e.g. excessive winds). This study examined the feasibility of employing satellite observation technology in conjunction with artificial neural networking to devise a wildfire susceptibility modeling technique for two regions in California. Timeframes of investigation were July 16 to August 24, 2017, and June 25 to December 8, 2017, for the Detwiler and Salmon August Complex wildfires, respectively. NASA’s MODIS imagery was utilized to compute NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), land surface temperature, net evapotranspiration, and elevation values. Neural network and linear regression modeling were then conducted between these variables and ∆NBR (Normalized Burn Ratio), a measure of wildfire burn severity. The neural network model generated from the Detwiler wildfire region was subsequently applied to the Salmon August Complex wildfire. Results suggest that a significant degree of variability in ∆NBR can be attributed to variation in the tested environmental factors. Neural networking also proved to be significantly superior in modeling accuracy as compared to the linear regression. Furthermore, the neural network model generated from the Detwiler data predicted ∆NBR for the Salmon August Complex with high accuracy, suggesting that if fires share similar environmental conditions, one fire’s model can be applied to others without the need for localized training.

> 更多

科展作品檢索

A deep learning-based home safety perception system for household service robot

In 2016, the population of people over the age of 65 in Macau was 11.2%. This means that Macau has already become an aging society. As such, more younger generations are needed to look after the elderly. According to statistics, falls are the primary cause of injury or death for the elderly over 65 years old. About 30% of the elderly over 65 years old fall every year. Along with the increase in the elderly population, it is urgent to find a fast and effective way to ensure the safety of the elderly. As there is a lot more danger besides falling in an elderly life, we aim to build a robot collocated with its danger detection system to ensure the safety of the elderly at home. The reason we decided to use robots is that we want to have larger flexibility and mobility, for example, we can give elderly rescue materials when they need help. Moreover, more home robots will be used in the future, they can just apply our system to theirs and ensure the safety of elderlies. In this research, we mainly used cameras with the Openpose model to detect dangers such as falling, potential human action danger, and environmental danger. Innovative ways are used to detect fall action, collocated with our home robot, it is a foreseeing project that could ensure the safety of the elderly in a home environment.

> 更多

科展作品檢索

Absorption of Sr2+ at low concentrations using C.moniliferum-- With the aim of practical use of contaminated water processing of the Fukushima Daiichi Nuclear Power Station

We are conducting research for the purpose of treating contaminated water generated by the nuclear accident with C.moliniferum. In previous research, the school seniors examined whether there is a difference in absorption by changing the wavelength of the LED to establish efficient Sr2+ absorption conditions. As a result, the red wavelength was found to be effective for the efficient Sr2+ absorption of C. moniliferum. Therefore, in this study, in order to verify how much Sr is actually absorbed into the cell, the amount of Sr absorption using an atomic absorption photometer is quantified, and the previous research has shown that red is effective for the efficient Sr2+ absorption. The wavelength was considered to be effective because of photosynthesis, and was observed with a scanning electron microscope (SEM) using the photosynthesis inhibitor (DCMU). As a result, it was clarified that C. moniliferum absorbs Sr intracellularly, and photosynthesis was related to absorption.

> 更多

科展作品檢索

Development of a rotor blade with optimized aerodynamics to propel a quadcopter

Sustainable mobility concepts are playing an increasingly important part in today's social developments. As a promising mode of future transportation, quadcopters play a special role, and their further development and optimization is being advanced along many disciplines. Even in my hometown of Zurich this trend has not passed by without leaving its marks. Since 2019, the Swiss National Postal Service has been testing autonomous means of transport together with the Zurich University Hospital as part of a pilot project. However, quadcopters are not exclusively used for transportation purposes. Geologists use them for landscape modeling and the insurance industry utilizes them for damage assessment. Quadcopters have also become an integral part of photography and agriculture, where they are used for pest control, for example [2]. I first became intensively involved with quadcopters in 2017, when I received a hobby model for my birthday in the form of the Mavic Pro from the Chinese company Da-Jiang Innovations Science and Technology Co., Ltd (DJI). In October of the same year, I completed an internship in the biofluid mechanics department of the Institute for ImplantTechnology and Biomaterials e.V., where I studied the aerodynamics of airfoils. With my Mavic Pro in my backpack, I had the idea to develop and prototype my own functional rotor for my quadcopter as part of my upcoming Swiss Matura thesis paper. The rotor would be considered functional if it generates enough lift to keep the quadcopter hovering. The focus of this project was the investigation of aerodynamic properties. The influence of other factors, such as the material used, was not the primary focus of the work and therefore not investigated in detail.

> 更多

科展作品檢索

Synthesis of Macro Porous Activated Carbon from Waste Polyethylene Terephthalate (PET) Bottles and Investigation of Usability in Dye Removal from Water Sources

Colorants are used in many industries, especially in the textile industry. These substances both cause visual pollution and create an anaerobic environment for aquatic creatures. In this study, it is aimed to examine the usability of activated carbon synthesized from waste polyethylene terephthalate (PET) bottles, which is an important environmental problem, in removing the pollution caused by the colorants caused by industrial activities in water resources.

> 更多

科展作品檢索

Design and Prototyping of a Low-Cost Ventilator for Rural Hospitals

This report includes the design and prototyping of a portable automatic bag-valve mask (BVM), or commonly known as the Ambu bag. This development is for use in emergency transport, resource-poor environments, and mass casualty cases like the COVID-19 pandemic. This device replaces the need for human operators whose job is to squeeze the BVMs for extended periods of time. The prototype is made from a stainless-steel skeleton, measuring 470 x 240 x 230 mm, with the addition of acrylic coverings. A repurposed motor from a car is used to drive the squeezing arm. The speed of the arm for inspiration and expiration along with the pausing time between each breath can be adjusted with this prototype. It also features an LCD screen to display the arm speed, along with real-time pressure graph displayed on both phones and computer monitors. For future versions, an app is to be developed to enable the control of the automatic bag-valve mask from phones and tablets, further creating ease for users and increasing portability. Additionally, important requirements will be added: alarm system for over pressurization, control for inspiration to expiration ratio, number of breaths per minute, control for tidal volume, pressure relief valve, and assist-control mode. The cost of this prototype is approximately $430. With this design of an automatic BVM, it allows for the production of a ventilator-like technology that will be able to perform main functions of basic ventilators at a fraction of the current cost.

> 更多

科展作品檢索

The critical role of the first discovered detached pharynges during the successful predation of Penghu Oyster Leech

澎湖牡蠣養殖受扁形動物危害嚴重但缺乏相關研究。本研究首次採集活體澎湖蚵蛭Stylochus ( Imogine ) orientalis splendida Bock, 1913進行捕食行為研究。觀察澎湖蚵蛭捕食過程分為攻擊期、捕食期和消化期,並首次報導攻擊期中發現新型的離體咽。離體咽具負趨光性( P <0.01 ** )能朝向牡蠣殼內暗處移動,使其開閉殼頻率與死亡率增加。離體咽也顯著影響文蛤死亡率 ( P <0.01** ),20條以上離體咽即可導致文蛤死亡率 60% 以上,造成文蛤外套膜萎縮,且與數量呈高度正相關 ( R2 = 0.964 ),外套膜切片顯示離體咽可導致外套膜肌肉變細且形成許多空洞。經離體咽均質和硫酸銨沉澱法萃取蛋白質後,通過SDS蛋白質電泳比較澎湖蚵蛭離體咽、咽、與其他部位的粗萃物,分離出目標蛋白質,以MALDI-TOF質譜儀分析分子量約為10 kDa。證據顯示離體咽是蚵蛭成功捕食牡蠣的重要關鍵,亦是海洋扁蟲從未被報導過的新行為。

> 更多