搜尋結果
查詢
the共找到
1323筆。
如查無相關資訊,可至
進階搜尋
進行查詢
科展作品檢索
IMPACT OF FIRE WOOD COLLECTION ON WEATHER AND CLIMATE OF JIRDIN VILLAGE
Climate is the average weather in a place over a long period. The changes in climate may be due to natural forces or from human activities. There is growing concern among the scientific community regarding climate change. Biodiversity, forest, monsoons, weather are now at risk due to climate change. Today climate change is happening at an increasing rapid rate. One of the causes is deforestation. Firewood collection in one of the major means the felling of trees. Excessive emission of CO2 by burning, which is a green house gas, responsible for increasing the temperature and causing drastic climate change. Hence, to know the impact of firewood collection in drastic climate change we have undertaken a project entitled, “Impact of firewood collection on weather and climate of Jirdin village.”
> 更多
本研究將竹炭與銀兩種不同的材料結合,研發出金屬結合非金屬的複合導電材質;利用銀鏡反應,以竹炭當作載體,製作出竹炭-銀複合物,透過自製竹炭-銀電壓與電流的裝置,發現竹炭-銀錠最佳導電的質量比例為竹炭比銀1:9,利用掃描是電子顯微鏡,分析竹炭-銀複合物,發現銀會有效分布在竹炭表面形成包覆,竹炭銀定可導電,電阻介於純銀與炭之間,其電阻極低,將來可應用在代替石墨作為電池的電極,對提升導電度會有幫助;In this work, using the silver-mirror reaction, porous bamboo charcoal has been successfully adopted as novel supports for immobilization of silver nanoparticles by a chemical reduction method and the metal-nonmetallic composites with conductivity efficacy were investigated. Through the test of homemade voltage with the electric current instrument, we found out that the best ratio of conductivity in the bamboo charcoal-silver ingot is 1:9. Scanning electron microscopy (SEM) of the composites show uniform Ag particles distribution on the BC matrix. The bamboo charcoal-silver ingot has the conductivity. The resistance, between the pure silver and the coal (graphite), is extremely low. Thus, this composite will promote conductivity and apply in the battery of electrode for replacing the graphite in the near future.
> 更多
科展作品檢索
FABRICATION AND CHARACTERIZATION OF CARBON NANOTUBE DOPED PHOTOVOLTAIC CELLS
Nowadays, the increase in population and the rapid depletion of nonrenewable energy sources brings the need for energy. In this case, scientists are forced to develop technologies by using renewable energy sources. Sun is the unlimited and renewable energy source. Organic solar cells absorb the light from the sun by the active polymer layer and transform it into electrical power. Organic solar cells are advantageous than inorganic ones because of being low-cost, easy-to-use and proper for large scale applications. In this project, it is aimed to produce organic solar cells by using specific amounts of carbon nanotube (CNT) doping. According to this aim, it is detected by using the fluorescence spectroscopy that CNTs can be used in organic solar cells. Later, the homogenous distribution of doping SWCNT into donor material was displayed by AFM, and correct proportion of SWCNTs are chosen by those images. In order to increase the efficiency of organic solar cell SWCNT doped P3HT was used as donor molecule. The acceptor molecule was PCBM in here. Surface characterization of prepared samples was made by Atomic Force Microscope (AFM), while electrical characterization of them is done with airless environment cabin (glove-box) system in nitrogen environment. As a result, devices prepared with addition of cyclohexanone in P3HT: SWCNT%:PCBM new load paths to carbon nanotubes were provided, as a result of the measurements short circuit current obtained was raised from the reference to 53%. The best yields were found as 2.24% in 0.2% SWCNT doped devices. This result shows efficiency is healed according to the reference rate as 64%. In this study, certain amounts of carbon nanotube doped organic solar cells were produced, which are highly efficient rather than traditional organic solar cells and low cost, easy-to-produce rather than inorganic solar cells, by using environmentally friendly materials.
> 更多
科展作品檢索
Plexiglas: from synthetic glass to cationic exchanging resin
Plexiglas is a macromolecule (poly-methyl-methacrylate) obtained by polymerization of the Methyl Methacrylate. Cation exchanging resins have acidic groups such as COOH (carboxyl) and SO3H (sulfonic) which fix metallic cations dissolved in water releasing an equivalent of protons through the following reaction: 2 RCOOH + Me2+ (RCOO)2Me + 2 H+ Regeneration is made treating the exhausted resin with diluted hydrochloric acid (HCl) which moves the equilibrium to the left. The aim of our research is to re-use the discarded Plexiglas by transforming it into a cationic exchanging resin. Alkaline hydrolysis transforms the COOCH3 group into COO– group; the obtained group is then transformed into COOH group by means of a treatment with HCl. After the alkaline hydrolysis spectra of the solid show the characteristic band of the asymmetric stretching of the COO– (1610-1550) at 1567 (1st experiment) and at 1555 (2nd experiment). Instead after the acidic treatment the spectra of the solid show that this band has disappeared. On the contrary the characteristic band of the OH stretching of the COOH group (3300-2500) at 3228 (1st experiment) and at 3200 (2nd experiment) appears. The water hardness, due to Ca2+ and Mg2+ ions, is studied to verify the capability of the obtained resin to capture these cations. For this purpose, some mineral water is percolated through the micro-columns. There are three experimental evidences to validate the hypothesis: EDTA molecule (Ethylene Di-amino Tetra-Acetic acid, disodium salt) to estimate hardness is not required The pH of the percolated water through the column decreases from 8 of the mineral water without any treatment, to 6.3 after the treatment as expected The spectrum recorded in the visible range of the percolated mineral water through the column plus EBT (Eriochrome Black T) indicator is the same as the spectrum obtained using de-ionized water plus the same amount of EBT In conclusion, the study has provided evidence that it is possible to convert Plexiglas into cationic exchanging resin.
> 更多
科展作品檢索
Interaction of the unsaturated sulfones with azinium ylides
1. Introduction In Japan the energy self-efficiency is very low: only 6%. Hydrogen (H2) has been expected as a new and alternative energy source to imported one, such as petroleum resources. Now hydrogen energy comes into the practical use in the field of the fuel cell. Hydrogen must be extracted from other sources, for example, water, fossil fuel, and so on. Hydrogen is obtained from water by using electronic or thermal or photo energy in most cases, whereas it is well-known that hydrogen is given by the oxidation reaction of silicon in alkaline aqueous solution: Si + 2OH- + H2O → SiO32- + 2H2 Free silicon (Si) is not only used in the steel refining, aluminum-casting in the field of fine chemical industries but also is used as a material in semiconductor electronics. However, a lot of used silicon is thrown away as a waste, being not reused and recycled. In this study we try to apply a waste silicon to obtain hydrogen based on the above reaction. The purpose of the study is to develop a safe and convenient manufacturing method to generate hydrogen for an energy source of the fuel cell.
> 更多
科展作品檢索
Application of molecular templates on magnetic particles for adsorption and desorption of heavy metals
This study investigated the production of novel molecular templates, and analyze their adsorption effect on four heavy metal ions (Cu+2, Pb+2, Zn+2, Mn+2), which commonly exist in Taiwan's rivers. Different operating conditions (such as competitive adsorption, pH value and other factors) were explored to compare their adsorption effect of heavy metal ions by using the synthesized template molecules. The molecular templates were found to be specific towards their target metal ions with a high adsorption effect. Then combined with the idea of magnetic particles to produce magnetic molecule templates, a maximum amount of adsorption of heavy metal ions up to 95% through the molecular template was achieved while the effect of heavy metals desorption of up to 83% could be also successfully obtained. Experimental results showed that the magnetic molecule templates did not affect the adsorption of heavy metal ions. Not only can they speed up the recovery time of adsorption but the template molecules can also be collected more efficiently. We also proposed three different applications for the developed molecular templates. The development of magnetic molecular template may provide an affordable, highly-efficient way for dealing with heavy metal pollutions.
> 更多
科展作品檢索
Multi-Alarm Teleoperated
This article talks about the design, construction and operation of multi-alarm teleoperated. The work contains the different stages of construction that were performed for both hardware and software, as well as the way in which the entire process is developed. The prototype is autonomous. It can to detect the things that happen in the house and send a sms to the cell phone. With the cell phone you can drive a robot in the house.
> 更多
科展作品檢索
Investigating Novel Methods to Reduce Cholesterol Levels
An increase in blood cholesterol contributes to cardiovascular diseases, the number one cause of death worldwide. Statins are currently the most effective in reducing cholesterol levels and treating patients with high cholesterol. However, these pharmaceutical agents have been shown to cause several side effects, prompting the need for a more natural solution to increasing cholesterol levels. Hence, a study was conducted to investigate the ability of lactic acid bacteria in the removal of cholesterol, explore the mechanism for the removal of cholesterol by lactic acid bacteria, and examine the effectiveness of kidney beans and sunflower seeds in inhibiting HMG-CoA reductase in the cholesterol biosynthesis pathway. Results showed that Lactobacillus plantarum was the most effective in reducing cholesterol levels and that the mechanism for cholesterol removal included both the binding to cell wall and active uptake into cells. Sunflower seeds and kidney beans were also shown to be effective in inhibiting HMG-CoA reductase, with sunflower seeds having 100% inhibition of the enzyme, similar to pravastatin, a commercial cholesterol reducing drug, and kidney beans having comparable percentage inhibition of the enzyme compared to pravastatin.
> 更多
科展作品檢索
Bioinsecticide vs Aedes aegypti, vector of dengue, zika and chikungunya
The purpose of this research is to make an ecological insecticide that mixes the extracts of Piper tuberculatum, Annona muricata and Melia azedarach, that together in application cause mortality and repellence of the mosquito Aedes aegypti with the intention to help in the control of the diseases this mosquito is guilty of: dengue, zika and chikungunya, and decrease the risk of infection by a safe and organic way.
> 更多
科展作品檢索
Microbial Film Power Generation 2.0 - It’s about to get cooler
This study demonstrates that microbial film power generation is a potentially viable source of alternative energy. This research occurred over a period of two years. In the first year (2016) I tested a new method of generating renewable energy, referred to as microbial film power generation. I showed that electricity could be captured from microbial decomposition using solid graphite plates (29cm x 20cm) placed in lightly decomposed muskeg (collected in northern British Columbia). In the second year (2017) the purpose was to increase the power output of the fuel cell, while also compacting the setup. Certain changes were made to the experimental set up, namely the use of spongy graphite felt in place of solid graphite plates, thus providing a larger surface area for microbial activity to occur. The new fuel cells made produced about twice as much power. Not only was the power output greater, but it was produced from a much smaller area: 7.82 mWh/cm2 on graphite felt, compared to 0.21 mWh/cm2 on graphite plates. In other words, graphite felt produced 37 times more power per unit area than graphite plates. Furthermore, it would appear that by removing the load from the fuel cell for approximately 24 hours, the fuel cell could essentially recharge. This may be due to microbial activity releasing more electrons onto the anode permitting a new cycle to take place. This would suggest that the system could naturally recharge itself.
> 更多
科展作品檢索
Prototyping a Compact Multi-Format Optical Transmitter for Next Generation Regional and Long Haul Terabit Networks
The last two decades have seen 60% annual growth rate (AGR) in the global IP traffic and it is expected that the AGR will keep the exponential growth in the next five years. Recent advances in digital signal processing enabled the implementation of the dual polarization (DP) optical coherent digital receivers, which substantially improved their performance. The goal of this research is to develop a prototype of a compact superchannel flexible DP M-ary quadrature amplitude modulation (MQAM) optical transmitter and demonstrate its reconfigurability to accommodate baud rates ranging from 8-32 Gbaud∕s to achieve 1 Tb/s and beyond using the same hardware. The research work consists of three phases; Phase I is the study of transmitter electrical and optical parts; Phase II investigates the potential configurations for frequency comb generator circuit; Phase III deals with the superchannel experimental prototype. The results obtained so far are pertaining to phase I and phase II with some preliminary experimental validation pertaining to phase III. The experimental results show that the measured component characteristics are matched with the components specifications data sheets. Additionally, the designed frequency comb generator was able to create up to 9 optical subcarriers with flat gain of 0.5 dB amplitude. Transmission over optical subcarriers has been attempted using standard optical transmitter. These results show promise towards the generation of a variable data rate up to 1Tb∕s. IEEE and ITU-T standardization effort considered these data rates to appear around 2017, and are intended for Next Generation Regional/Long-haul Networks.
> 更多
科展作品檢索
Bioplastic - The Future is Degradable Plastics. Investigating Biodegradation of Polyhydroxybutyrate Bioplastic by 紐西蘭 Soil Microorganisms
The rate and production of conventional petroleum based plastics is unsustainable and not eco-friendly. Plastics often end up in marine environments and can take hundreds of years to decompose in landfills. According to Statistica, in 2015 alone, global plastic production was approximately 322 million metric tonnes and is projected to increase in the future. PHB bioplastic or Polyhydroxybutyrate is both biologically produced and biodegradable and can serve as a viable alternative to conventional plastics. But can it be broken down by soil microbes within a reasonable time frame? I have set out to answer this question. My aim was to isolate and analyse microorganisms from the Rotorua area that are capable of degrading Polyhydroxybutyrate (PHB) bioplastic . I isolated PHB degrading microorganisms from Rotorua soils by culturing on an agar based mineral salt media supplemented with PHB powder (MSM PHB agar). Samples were taken from Mount Ngongotaha and Te Puia geothermal soils as well as Okareka, termite frass and termite guts. One isolate from the Te Puia sample (labelled G2) was found to successfully degrade PHB powder. After isolation and purification of the G2 isolate, it was cultured on a range of media types to examine properties exhibited under differing nutrient conditions. Multiple organisms were found to be involved in the degradation of PHB bioplastic and work together symbiotically, this included bacteria and fungi which was identified as penicillium. The sample isolated from Te Puia soils (site 2 – G2Clear) in the Rotorua environment was found capable of competently degrading PHB, clearing 8% of PHB after 26 days. The G2Clear isolate is a mixture of bacteria and fungi working in an endosymbiotic relationship to degrade PHB and are unable to successfully degrade PHB individually. It is through the secretion of an extracellular PHB depolymerase enzyme that PHB is degraded, conforming with my hypothesis. This proves that PHB bioplastic is a viable alternative to conventional petroleum based plastics as PHB can be relatively quickly broken down by soil microorganisms.
> 更多