搜尋結果
查詢 the共找到 1323筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

蓮花自潔效應之成因機制

奈米科技是二十世紀末、二十一世紀初新興的科學技術,由於它是在1~100 nm(n = 10-9)的尺度內改造原子及分子排列,創造新物質【1】,將顛覆傳統改造物性,被預言將帶來人類的第四波工業革命,對物理、電子、光電、化工、材料、生醫、機電各領域帶來巨大衝擊。『蓮』是世界上最早的被子植物之一,在一億四千萬年前就生長在地球上,蓮的分布甚廣,從印度、中國、日本、北美到西伯利亞到處都有蓮的蹤跡。蓮的生命力強,很能適應環境,美國加州大學曾試驗培植古代蓮子,經過1300 年的沉睡,古代蓮子仍然正常發芽【2】。台灣的蓮花是十七世紀的移民,自中國帶來種植的。『奈米科技』和『蓮』這兩個不同年代的產物名詞如何連結在一起,他們怎樣相互依存;這正是本文討論的重點,也是了解『奈米科學』很好的例子。本文藉出汙泥而不染,闡述蓮花的自潔(self-cleaning)效應。一般在奈米技術中,簡稱『蓮花效應』【3】,包含清潔機制、成因;使用觀察紀錄自潔狀況情形,幫助對蓮花自潔過程的掌握。期望能對具有蓮花效應的奈米結構提供良好的意見。本研究的結果發現,蓮花效應強的植物,幾乎具有高抗水性。而抗水性是來自奈米結構和表層蠟質,這兩個特質也是蓮葉、芋頭葉等高蓮花效應的植物所具備的,所以我們推論:奈米結構和表層蠟質越發達,抗水性越好,則植物葉面的蓮花效應越強。Nano technology is one of the most advanced technologies now. Since it will alter and rearrange the fundamental structures of atoms and particles within the space of 1~100 nm (n=10-9) the coming industrial revolution depends on it. Nano technology will pose dramatic impact upon a variety of specific fields including physics, electronics, photon electronics, chemical industries and so on. Lotus is one of the most primitive covered-seed plants. It has existed since 140 million years ago and has spread in wide areas. The University of California made lotus seeds that have been frozen for 1300 years sprouted. The Taiwanese lotus seeds were transported from China in the 1600s. The researchers are to probe into the relationship between the nature of lotus and nanotechnology to understand the potential significance of this newly developed technology. The researcher employed the direct observation and tape recording to collect the objective data of the individual growth steps of lotus to analyze the self-cleaning effect of the lotus. In the conclusive part, the application of the Lotus Effect and the creative technology will be discussed and analyzed with the hope to prescribe both a conclusive experimental principles and a further direction for the manufacturing systems related to the developing Lotus Effect. The researchers of the study found that those plants, which have high quality of Lotus Effect, are given the nature of resisting water, which is the consequence of two features namely, the nano-structures and the surface wax. And the leaves of lotus, potato all have these two features. Therefore, it is inferred that the more efficient mechanism of the nano-structure and surface wax and Lotus Effects the plants are, the more effects of the water-resistance function will the plants achieve.

> 更多

科展作品檢索

Pulse Jets

I made this jet engine to demonstrate how a pulse jet works and to show were the fundamentals of powered aviation all began. I also made this project to gain more knowledge, due to my interests in engineering and turbines. I would also like to measure the thrust of this model in the future. And hopefully this might inspire other people to use this type of engine in their model aircraft.

> 更多

科展作品檢索

芯電感應

Based on Ampere,s Law, the magnetic field intensity of the solenoids is B=μ0μr?n?I, where μ0 is the magnetic permeability of free space, μr is the relative magnetic permeability, n is the number of coils per unit length and I is the solenoidal current. The end magnetic field of the solenoid must multiply by one half. According to the above result, it can be greatly strengthened by the addition of a ferromagnetic core. First, we observe three different inserted materials of coils (wood, iron and magnetite), whose magnetic induction in different solenoidial current. By experiment, when the iron and magnetite materials were inserted into the coil, it would produce larger magnetic induction. The calculated relative magnetic permeabilities of wood, iron and magnetite materials are 0.57, 18.37 and 18.32, which are close to the reported paper (1). When the driving field is removed, the fraction of the saturation magnetization of the magnetite is retained, which is called hysteresis and is related to the existence of magnetic domains in the material. In the second part, we change the frequency of circuit switch, which induced different current. Compared with the result of the first part, it would fit the result, which is the induced magnetic field is proportion to the solenoidal current. 根據安培定律,螺線管的磁場為B=μ0μr?n?I。其中μ0為真空中的導磁率,μr為相對的導磁率,n為單位長度的線圈匝數,I則為通入螺旋管的電流。至於螺旋管的端點磁場須再乘上1/2。所以根據上述的結果,當螺旋管插入鐵磁性物質,會增強螺旋管的磁場。首先,觀察三種不同的芯物質;非鐵磁性材料,軟磁材料,硬磁材料(木棒,低碳鋼棒,磁鐵棒)在不同的外加磁場下的感應磁場,得到芯物質的磁化曲線,而計算出來的相對導磁率分別為0.57, 18.37 和18.32與參考文獻(1)接近。而當外加磁場移走時,硬磁性物質的磁性仍然存在,稱為殘磁現象。在第二部分,我們改變線路開關的頻率。發現不同的開關頻率,會得到不同的螺旋管電流,而造成不同的感應磁場。再度驗證了感應磁場大小是正比於螺旋管電流的大小。

> 更多

科展作品檢索

Technology of web site advancement

Internet by its content represents a fountain of information, while from the point of view of its arrangement it is a huge dump. There are an enormous number of web sites. Multiple web sites are commercially directed, i.e. are aimed at profit earning. As profit depends on the number of visits to web site, no visitors means no profit. So, to obtain more orders, web site producers should first of all ensure good inflow of visitors (web site attendance). Every year this task becomes more and more critical for commercial web site owners (and not only for them), as the number of similar content web sites increases steadily along with competition intensifying correspondingly. The process of establishing conditions to attract more visitors is called web site advancement. The present paper discusses various ways of how to increase the number of web site visitors, it also describes the particular process of "Theater to Children" (www.teatrbaby.ru) web site advancement. Based on the paper outcomes a CD multimedia manual "Technology of web site advancement" has been developed that will help web site producers to achieve good attendance for their network resources. As the purpose of web site advancement is visitor number increase then the main criterion of web site advancement efficiency should be the number of visitors for a certain time period, e.g. for 24 hours, a week or a month. Taking into consideration that about 80% of Internet users retrieve information through search systems, the major growth of visitors will occur owing to the enhancement of web site visibility in search systems.

> 更多

科展作品檢索

烷類數位密碼

本研究主題主要是解決化學上複雜同分異構物的繪製以及其命名,因為物質在結構複雜時其同分異構物變化之多令人難以捉摸,於是我應用電腦強大的邏輯處理以及運算判斷的能力來讓電腦繪製。以下是我想達成的目的:(1)排列出分子式的同分異構物(2)顯示出同分異構物之示性式、結構式(3)預知尚未創造出物質的性質研究中我創造出以下原則讓我方便達成研究(1) 數位密碼:為了讓電腦方便執行我使用數碼的方式表達各種同分異構物(2) 五大原則:此原則能讓不僅是電腦甚至是各個要繪製同分異構物的人都能有架構的繪製,不會遺漏任何的組成。(3) 3D顯示:透過X3D軟體的協助我能讓使用者透過立體的方式了解到物質的結構。The purpose of this research is to solve the problem of Isomer’s structure drawing and named problem. It’s hard to predict the status of complex Isomers, so we use the powerful logic and calculational ability of computer to draw the structure of Isomers. The following points is the goal that we want to reach (1) Arrange the structure of the Isomer’s formula (2) Show structural formula of Isomers (3) Predict the chemistry of things that haven’t been created During our research, we create the following principle to help us do the research (1) Digital Codes: In order to let the computer to run the process, we use digital codes to express all the Isomer’s formula. (2) The “5 Rules”: The 5 rules can help not only computers but all the people who try to draw the structure of Isomers without losing any of compositions. (3) 3D Display: Helping our user to understand the structures of materials with the 3D images producing by the “X3D”.

> 更多

科展作品檢索

A Physical Analysis of the Difference in Ungues of Insects on Types of Habitat

1. Purpose of the research While studying about insects for school club activity, we found that there are differences in several anatomical characters of the insects according their habitats. Especially, the unguis was different as whether the insect lives in water or on land. So we observed the structure of unguis of some insects by microscope, and physically analyze to relate with the habitat of each insect. 2. Procedures First, we read papers and books about insect morphology to study about insect's unguis. Then, we collected samples of Chironomus plumosus(larva), Neuronia regina(larva), and Carbula humerigera. After pretreatment of samples, we put them in the SEM (Scanning Electron Microscope), observed the unguis of each insect and took pictures. 3. Data First, the larva of Chironomus plumosus has prolegs with numberless hooks that has a certain arrangement and the same angle of 90º. They also has several tiny swellings around the hook. Next, the larva of Neuronia regina has pincer-like unguis which were sharp and bend, reminding the shape of a quadratic curve. Lastly, Carbula humerigera has two large, thick pincer unguis, its form same as the of Neuronia regina. The unguis are very sharp and faced towards the land. 4. Conclusions Both the aquatic insects and the terrestrial insects have structures in unguis developed to increase precision on land. Especially, the angle of unguis were all close to 90º. In addition, aquatic insects like the larvas of Chironomus plumosus or Neuronia regina have particular characters increasing friction force according to resist the flow of water.

> 更多

科展作品檢索

Charging the Miniature Electronic Components of Medical Equipment in Vivo

世界上有許多病患,需要在體內植入電子醫療裝置,才能維持生命。然而,電池充電的問題卻一直無法克服,於是必須透過開刀重新更換電池,如此不僅增加病患的痛苦,也增加了醫療成本與環保問題。然而,過去研究以提高電池蓄電量為主,只有極少數研究著重在探討隔空充電技術,例如:動物體內電池充電。本研究主要是應用電磁感應原理,設計一套可以針對實驗兔體內體溫發射器的電池進行充電的方法,及探討充電過程所產生的電磁輻射及其影響。我們的初步研究成果顯示: (一)將24V與18V兩種電壓分別輸入電磁棒,在實驗兔動物身體表面進行充電,發現可產生的最高充電電壓值分別為4.75 V與3.64V。(二)充電30分鐘後可讓體溫發射器每二秒發射一次訊號,為期長達8天。(三) 將24V與18V兩種電壓分別輸入電磁棒,在距離電磁棒5-60cm的範圍,最大的電磁輻射值為179.6mG及0.1 mG。本研究證實我們設計的電磁棒可以對兔子體內電池進行隔空充電,並且不會對實驗兔子造成電磁輻射傷害。我們建議未來可以應用此方法解決動物體內醫療電子元件的充電問題。

> 更多

科展作品檢索

搖搖樂— 自然的搖擺頻率

一. 此研究是探討物體自由搖擺的現象,單擺和複擺是在物理學上常見的擺動現象,都是一種固定支點的擺動現象,尤其複擺運動時,擺動物體受轉動慣性影響而造成支點的受力,為一種拘束的第一向後運動現象。而本研究在探討多自由度自由支點的單一方向度之擺動現象。二. 本實驗從這幾種方向分別探討1. 扇形體在平面上之擺動2. 平板在圓弧面上之擺動3. 扇形體在圓弧曲面上之擺動三. 經我們實驗研究結果發現,在地球重力場中沒有固定支點的搖擺現象,是受到下列幾種因素影響1. 搖擺形體的形狀,其質量慣性矩的影響。2. 擺動物體與接觸路徑的相互影響。3. 擺動質量對擺動的頻率影響很小。This research explores the phenomena of swinging objects--- simple pendulum andcompound pendulum, which are constantly observed in physics. The inertial moment of the swing produces pressure to fixed points of support on which the swings occur, especially in compound pendulum, which are classified as restricted single freedom. The study provided here explores the phenomena of the frequency of unfixed supporting points. The exploration of this research develops experimentally as follows: a. fan shaped objects swinging on the plane surface b. flats swinging on the arced surface c. fan shaped objects swinging on the are-curved surface An impressive conclusion that there is no swinging phenomenon of fixed supporting points in gravity field on earth is achieved from the above experiments. A number of factors influence the phenomena of swings: a. the shapes of swinging objects and the influence of mass inertial moment b. the interaction between swinging objects and interfacing paths c. little influence from swinging mass to the swinging frequency

> 更多

科展作品檢索

Elastomeric Grating for Wavelength Switching in Optical Communication Systems

A diffraction grating was fabricated from an elastic polymer. It was patterned after a plane reflection grating with a pitch of 1200 lines/mm. It was characterized using a HeNe laser to verify properties. Angular scanning as a function of applied strain was observed for two individual wavelengths. Intensity of fiber output was optimized as an application of angular scanning in fine alignment. Beam profiles showed consistency of first order diffraction intensities at different levels of strain. This showed that the elastomeric grating’s efficiency is independent from strain. The elastomeric grating’s variable pitch can be of immense utility in optical communication systems. A stretchable grating can be used to replace typical high-cost architectures of metal or glass gratings of different pitches that correspond to various spectral regions. By changing the pitch, the grating can be used for different wavelength ranges. The elastomeric grating’s variable pitch can be used to scan different wavelengths over a wide range of angles. Angular scanning is used for wavelength channel selection, and since an elastomeric grating diffracts different wavelengths differently, it can be used for wavelength switching and wavelength division multiplexing in optical communication systems. Laser beams of different wavelengths carrying different signals can be transmitted simultaneously through an optical fiber and diffracted to route the wavelengths onto separate wavelength-specific channels.

> 更多

科展作品檢索

微風六型水族冷暖過濾整合系統

本研究主要目的在於設計一套環保節能、價格低廉且維修方便的水族整合系統。因此我們針對市面上常見的水族設備進行優缺點分析,並且從冷卻、過濾與溫控三大方向進行研究與改良。實驗過程有以下幾點重要心得與發現:小型水族系統可採用致冷晶片(Thermoelectric Cooling, TEC)作為冷卻機的冷卻核心,其整體表現優於傳統壓縮式冷卻機;致冷晶片的「熱面」散熱越好,「冷面」致冷力也越好;致冷晶片雖然運作電壓越大時,降溫幅度越大,但最佳經濟模式為在電壓12V下運作;致冷晶片在室溫越高的情況下運作,冷卻效果越好;致冷晶片搭配電子式控溫器,水溫控制的精確度較高,但也因啟動次數較多,造成晶片故障率提高;我們所研發的「微風六型不鏽鋼冷卻平台」為升降水溫的最佳介面;「微風六型水族冷暖機」搭配「側面強制過濾+底部過濾」的過濾方式將可適用於所有的水族養殖系統;「微風六型水族冷暖整合系統」採模組化設計,維修容易、價格低廉且環保節能為值得推廣的水族整合系統。

> 更多

科展作品檢索

明察秋毫-動態測微器

The purpose of this research is to create a device that is able to precisely measure small dynamic changes which cannot be recognized by the human eyes. The Vernier Caliper and the screw micrometer are common tools used to precisely measure lengths of objects. However, things which are measured by the Vernier Caliper or the screw micrometer have to be in a solid state, and the shape cannot be changed. By applying the light lever principle on Lego bricks, this research uses the LabVIEW graphical programming system to design a device which is able to automatically measure small dynamic changes. The precision of this device is higher than that of the Vernier Caliper and the screw micrometer. Moreover, this device is able to precisely detect the small dynamic changes of solids and liquids as well. Through numerous tests, the least count of the device can reach the level of 10-3cm. Also, this device has successfully measured small changes, such as the height of the liquid surface by one drop of water, the evaporation of water in one minute, and the growth of a plant in one hour. By popularizing this device, people will be able to precisely measure small dynamic changes which are difficult to be measured in a short time.

> 更多

科展作品檢索

就是那道光-色素增感型太陽能電池改良之探討

在這能源短缺的時代,開發替代能源已經成為主要課題。利用光觸媒特性所製成的色素增感型太陽能電池,因二氧化鈦光觸媒受到紫外光照射才產生電子躍遷,吸收光的頻率區域狹小,實用性不高。因此研究氧化鋅、二氧化錫與二氧化鈦混合,是否能提升該電池的轉換效率。藉由各種變因的探討,從中選取最有利的方式,使太陽能電池發揮更大的效益。除了以溫度、電解質、混合比例等因素外,增加電極面積以及串聯均可提高電壓與電流,以增加日常生活的實用性。如不斷的改進發展,諸如電解水、使小燈泡發光,甚至各種小家電用品的使用,都可應用於其中。In times of energy shortage, exploring the alternative energy has already become a main issue. The dye solar photocell is using photocatalyst characteristic. Because the electron transition is caused by lighting up the titanium dioxide photocatalyst by the ultraviolet, the frequency of spectrum is narrow and small. It is thus impractical. Therefore, we research whether or not the mixtures of zinc oxidize and tin oxide with titanium dioxide can improve the conversion efficiency of the dye solar photocell. Through discussion on various kinds of factors, we can choose the best way to make the dye solar cell yield more efficiency. In addition to the factors such as temperature, electrolyte, mixed proportion, etc., increasing the area of electrodes and contact can improve the voltage and electric current. That way we can increase the practicability for daily use. With constant improvement, it can be applied to many kinds of things, such as electrolyzing water, small bulb lights, even small household appliances.

> 更多