搜尋結果
查詢
the共找到
1526筆。
如查無相關資訊,可至
進階搜尋
進行查詢
科展作品檢索
In silico Investigation of Cyclosporine Conjugates as Potential Anti-angiogenic Agents via NFAT Inhibition
Calcineurin (CN) activation is a main cause of cancerous tumor formation, one of the leading causes of death globally. Cyclosporine-A (CsA) is a commercially available oral drug that inhibits CN activation; however, low bioavailability limits its use. Nine patented CsA conjugates are potential alternatives to CsA as they have improved cytotoxicities and bioavailabilities but unknown CN-binding affinity. This study aimed to identify the CNinhibition strength and bioavailability of CsA conjugates in silico drug-likeness evaluation via modified Lipinski’s Rule of Five was done on CsA, voclosporin, and CsA conjugates to test bioavailability. The binding affinities of bioavailable compounds were computed via docking to CN in five trials, and the binding affinities were compared. The Water-soluble, RVal, IIA, Alpha, and MeBmt 2 conjugates showed improved bioavailabilities compared to CsA as they passed the drug-likeness screening. After five trials of computational docking to CN, the IIA and RVal conjugates showed improved binding affinities at -15.8 kcal/mol and -15.2 kcal/mol, respectively, compared to CsA at -14.3 kcal/mol. Notably, IIA also showed an improved binding affinity compared to voclosporin at -15.5 kcal/mol. These results suggest that CsA conjugates may be better oral chemotherapeutic drugs than CsA.
> 更多
科展作品檢索
The Role of Impaired SUV3 in Mitochondrial Dysfunction and Its Linkage to Insulin Resistance in Type 2 Diabetes
第二型糖尿病的主要致病機轉為胰島素阻抗性, 但胰島素阻抗性的機轉仍不清楚。以往研究發現胰島素阻抗性與粒線體功能異常高度相關,但是兩者➀間的關係及機轉目前仍有爭議。本研究以 SUV3來進行調控,SUV3為粒線體RNA分解體➀組成要件,負責粒線體RNA中的代謝及調控。小鼠SUV3缺失會引起粒線體DNA突變,粒線體功能下降,而這些表現型可以經由會由母系遺傳到下一代。我們發現這些經母系遺傳到粒線體DNA突變的小鼠,會產生葡萄糖不耐症與胰島素阻抗性,伴隨骨骼肌的磷酸化Akt表現量明顯下降。進一步的研究發現經母系遺傳到粒線體 DNA突變的小鼠會產生高游離脂肪酸血症及運動耐受性下降,間接卡洛里測定顯示脂肪酸燃燒的比例下降。影響胰島素信息傳遞途徑,因而引發胰島素阻抗性。這些研究結果將有助於糖尿病患者的臨床研究,並希望能夠幫助患者。
> 更多
科展作品檢索
Breaking a Caesar Cipher / Vigenère Cipher Encryption for Secure Data Communication
This project had one purpose: creating almost unbreakable encryption by breaking a Caesar – and Vigenère Cipher and getting familiar with how they work. Created a program to encrypt and decrypt messages with a Caesar Cipher and Vigenère Cipher encryption. Breaking these encryptions in these programs will help to identify the factors that contribute to strong and weak encryption systems. A program was created to encrypt messages using Caesar Cipher with a key from 1 to 25 and decrypt messages without knowing the original key by doing different types of “attacks” on the system: a brute force and frequency analysis attack. Created another program to encrypt messages using Vigenère Cipher with a keyword or keyphrase and decrypted messages whilst knowing that original keyword. Tested and compared the two different cyphers when being attacked. This helped identify factors that influenced the strength of encryption and identified the advantages and disadvantages of each Cipher as well as the weaknesses in each attack. Through testing and breaking a Caesar and Vigenère Cipher successfully, multiple factors were identified that influenced the strength of the encryption system. These were used to ensure the new encryption created will be as strong as can be. Comparing the success rate of the different attacks on each Cipher, the similarities, weaknesses and strengths in the Brute Force and Frequency Analysis attacks were found.
> 更多
Stroke is a very common disease, almost a national disease. In terms of stroke frequency, 匈牙利 ranks second in the world. Every year, 40-50 thousand people become paralyzed or permanently injured as a result of cerebrovascular disorders. This number is three to four times higher than in developed countries. Almost every Hungarian family is affected! Of course, saving the life of someone who has a stroke is the most important thing, but rehabilitation is also very important, since only with the help of a physiotherapist will the patient be able to live a full life.
> 更多
"Blindness keeps you from things, deafness keeps you from people" (Helen Keller) Wibrazz is a communication tool that can be placed inside sportswear. Two versions have been developed. The simpler one allows hearing-impaired footballers to compete in the league with other athletes. The referee is given an additional device to give a signal when he blows his whistle. The hearing-impaired footballer then senses the signal from the device he is wearing and knows that he must pay attention to the referee. The complex version speeds up communication between the coach and the players during training sessions. It allows the coach to send simple messages to his players using his smart device. The athlete senses the signal from the device and acts on what has been previously discussed (e.g. a long signal means, "Everyone come to me!") With over 70 million deaf people worldwide, and 2-4 out of 1000 people in the United States who are functionally deaf, this can affect an individual's mental and physical well-being, and it is therefore a pressing issue to provide these athletes with the means to develop their talents in a traditional team environment. In addition to the organisations within countries, the ICSD is present on the international stage. Their importance is demonstrated by the fact that the 2023 Deaf Football World Cup featured teams from countries such as the United States, Germany, England and Japan.
> 更多
科展作品檢索
SAFE_MEDICATION - A STUDY OF USING ARTIFICIAL INTELLIGENCE TO RECOGNISE MEDICATION ERRORS
Medication errors in patients are a global problem. They can negatively affect patients and be costly for hospitals and medical clinics. In 2021, a 28-year-old man with heart problems was admitted to a hospital in Porto Alegre. Due to a pharmacy error and insufficient monitoring in the administration, he received a dose 10 times higher than prescribed. This caused serious and probably irreversible damage to the patient. Reading the news and following the case in the media has encouraged research in scientific databases, searching for information and data on medication errors, as well as emerging technologies to reduce the occurrence of adverse medication events. Based on the findings of an English study that proved that errors occur at the drug prescription stage, the first stage of this research focused on drug dosage errors. The aim of this study is to develop an application based on artificial intelligence that can recognise these errors and help prevent them. The application uses a neural network to analyse prescriptions and warn of possible cases of incorrect dosage. The computer program was developed using a neural network and the drug dosage error recognition system using Python and Keras. The system was trained with 10 drugs and correct and incorrect dosage cases. A graphical interface was created to input and display new case data. Neural networks with different configurations were tested to obtain high accuracy with the training and validation data. A confusion matrix was used to assess the accuracy of the network for cases not used for training. The accuracy was approximately 96%, but problems were found in certain intervals. The errors are due to the need for more training, higher processing capacity and a cloud server. The results of the first stage of the research indicate the feasibility of using a neural network to recognise medication dosage errors and thus preventing the associated risks. Such a method could prevent cases like the one in Porto Alegre. Future studies could incorporate more types of drugs, allergies, drug interactions, pre-existing illnesses and other relevant factors into the system.
> 更多
科展作品檢索
Artificial Intelligence Sensing Technology for Blinds Path Findings
Over 30 million souls live in a world of darkness, a number greater than the populations of both Norway and Sweden combined. Every individual deserves the chance to embark on a journey across our magnificent blue planet. Yet, regrettably, little has been done to assist them. With this project, we’re lighting the way for the blind to explore our beautiful world independently, breaking free from dependence and embracing boundless horizons. In order to put our theory of the project into practice & explore the use of artificial intelligence & computer science, we started by collecting the required materials for our project such as micro-controllers, sensors, a pair of glasses, a laptop, and a miniature camera. Then we moved onto creating the project itself in which the digital software programmed onto the hardware plays the key-role, as the sensors and the camera will record the details and information from the surroundings and send it to the laptop for further processing. The camera would be the backbone of our project, as it will stream real-time footage to the laptop which will be analyzed by an open-source object detection model ‘YOLOv8’ for identifying objects. After finishing the base model of our project, we tested it in-front of objects such as toy cars, bikes, people, etc, and the results of the object-detection would be shown on the laptop. To observe this data, we created a device which has different modules and integrations for different functions. For example, we will use our camera and then stream it onto a laptop so the reading and the data can be processed on the laptop by AI using YOLOv8. As mentioned in the start, many people do not possess the ability to see, to assist them we have thought of this device which uses all readings and its analytical skills to analyze data and help them navigate, travel or simply, live a better life.
> 更多
科展作品檢索
King's Power - The Utilization of Agricultural Waste in the Production of Sustainable Dry Cells
The idea of dramatically reducing the cost of the production dry cell, reducing its carbon footprint, and being able to be an alternative to current materials such as biochars really propels the interest of performing this project research. Biochars from durian husk, bamboo and coconut shell are promising alternative chemical materials of the anodes in the dry cell due to their eco-friendly traits and availability in the trophic areas which covers about 40% of the land on earth. Using the technique of pyrolysis, the latest and the best technique to produce a high carbon content biochars, the dry cell uses the potassium hydroxide as the electrolyte and manganese dioxide as the catalysts that make the biochar mixture to produce maximum voltage of 65% from the dry cell sold in the current market. The voltage analysis of the biochar dry cell was done in our school science laboratory and then, characterization tests analysis was carried out on the products from the specific biomass namely the SEM/EDX analysis, at the Material Characterization Laboratory (MCL), Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra 馬來西亞. Based on our research, the biochar obtained from the raw materials (Durian Husk, Bamboo and Coconut Shell) had shown different characteristics. The bamboo biochar had shown the most amount of carbon content which is 86.64% more than the durian husk biochar (72.77%) and coconut shell biochar (65.57%). On the other hand, based on the micrograph, we observed that the durian husk biochar had shown much created pores rather than bamboo biochar and coconut shell biochar. In our study, we found out that the average voltage produced by the three different biochars have shown that Durian Husk char dry cell produced the highest voltage which is 0.97V, more than the bamboo char (0.62V) and coconut shell char (0.73V). In conclusion, the biochar dry cell produced are much cheaper in term of its production as our biochar dry cell uses biomass that are freely available and comes from renewable source of energy, the best ingredient for Green Technology.
> 更多
科展作品檢索
Silver nanoparticles-loaded titanium dioxide coating towards immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation
The environmental implications of rapid industrialization, including rising pollution, depleted resources, the effects of climate change brought on by global warming, and unrestrained groundwater extraction, are contributing to a growing water scarcity crisis [1-3]. The improvements in quality of life are largely attributable to the innovations in manufacturing technology made possible by the Industrial Revolution, but these innovations also pose risks to the natural world and human health [1-3]. The textile business uses a wide variety of raw materials, including natural fibers like cotton as well as synthetic and woolen fibers, and the chemical components of dyes are just one example. The annual output of synthetic dyes is around 700,000 tons, and there are over 10,000 different varieties available. As much as 200,000 tons of synthetic dyes are released into the environment every year due to the inefficient dyeing technique commonly employed in the textile industry. According to the World Bank, the processing of textiles for dyeing and finishing accounts for between 17 and 20 percent of industrial wastewater [1-3]. Textile wastewaters contain a high biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, color, acidity, high suspended particles, high dissolved solids, surfactants, dyestuffs, heavy metals, and other soluble chemicals [3] due to the variety of dyes used to color textile items. In particular, water-soluble reactive and azo dyes are employed to obtain the required color. Ten to twenty percent of the dyes used end up in the effluents, where they might harm wildlife and the ecosystem (carcinogenic or mutagenic). Headaches, nausea, skin irritation, respiratory difficulties, and congenital deformities are only some of the health problems linked to exposure to textile wastewater. There are repercussions for aquatic ecology, environmental biodiversity, and the quality of receiving water bodies. New, low-cost, and highly effective water treatment methods are needed to deal with polluted wastewater. Adsorption and coagulation, two common water purification methods, just concentrate pollutants by shifting them to other phases; they do not "eliminate" or "destroy" them. Sedimentation, filtration, chemical oxidation, and biotechnology are all examples of conventional water treatment methods, but they all have their drawbacks. These include insufficient removal, high chemical reagent consumption, high treatment costs, long treatment times, and the creation of toxic secondary pollutants. New water treatment procedures are needed to improve the quality of treated effluent [1-3]. The use of semiconductor particles in photocatalysis is gaining appeal as a solution to global pollution problems due to its shown efficiency in degrading a wide variety of contaminants. Photocatalyst-coated surfaces-based reactors have proven to be practical for long-term operation over photocatalytic powder-based reactors (i.e., slurry-based reactors) [4-5]. As a promising photo-electrode and photocatalyst, titanium dioxide (TiO2) has enjoyed wider applicability in photocatalytic hydrogen generation, solar cells, and remediation of organic contaminants among other photo-catalytic applications [4-6]. TiO2 has been recognized as one of the low-cost, most effective, and fascinating photo-catalyst as a result of its interesting thermal and chemical stability, desirable electronic features, others, and environmental benignity [6-8]. Pristine TiO2 semiconductor is characterized by a wide band gap that can only utilize the UV part of the light spectrum with a wavelength of less than 385 nm, which is just 5% of the sunlight energy capacity. Spectrum usability extension to visible regions warrants further and extensive research study [8-10]. Additionally, the quickness of the recombination of photo-generated holes and electrons further restricts the practical applicability of the semiconductor [10-12]. It is highly desirable to develop a cost-effective scalable strategy to over these drawbacks toward sustainable development and a clean environment using only natural sunlight irradiation [5-11]. In addition, it is preferred to fabricate them as films rather than powders as photocatalytic immobilized reactors are more practical than powder-based reactors [4-8]. Dye sensitization, supports, magnetic separation, and surface modification by doping with non-metals, metals, and transition metals and coupling with other semiconductors have all been used to enhance the photocatalytic activity of TiO2 photocatalyst. Higher photonic efficiency can be attained through the synergistic fine-tuning of features such as physical, chemical, and electronic, and these composites and hybrid materials based on TiO2 are creating a big trend. Doping has been widely studied as a means of altering the surface of TiO2. Rare earth metals, noble metals, and transition metals are all discussed in the existing literature on the surface modification of TiO2 doped with cations [4-12]. In this study, for the first time, Ag nanoparticles loaded mesoporous TiO2 coating was prepared and applied as an immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation.
> 更多
科展作品檢索
Development of Electrical Shielding system for auto dust removal for solar PV modules
Currently, Large-scale solar PV systems installations are taking place in the desert environment and space to harness abundant solar energy effectively. Dust accumulation on the surface of photovoltaic panels (PV) is the most stignant problem for photovoltaic panels, as dust deposition reduces PV problem energy generation efficiency significantly. Thus, the removal of dust from the PV panels has become very important to increase the rate of energy efficiency by the PV panels. The dust particles could be reduced using traditional dust cleaning techniques. But, in the harsh and hostile desert environment, these approaches which requires a lot of water, complicated mechanical instruments, enormous logistics, and personnel. Electrodynamic dust shielding (EDS) system has been developed at our laboratory to remove dust particles from the surface of the PV panels. The EDS system has been successfully tested for dust mitigation. The unique features of our EDS System is that it is cost effective, easy to install and no manpower required as it is an unmanned system. The design and construction of a single-phase electrodynamic dust repulsion device built locally in KSA is demonstrated in this study. This work showed that the optimized electrode design and electrical parameters, such as AC source voltage and frequency, maximized the EDS system's dust mitigation effectiveness. A perfect balance was achieved between the geometrical and electrical parameters of the EDS system, resulting in a dust removal efficiency of up to 92±1 ℅.
> 更多
科展作品檢索
Observation of volcanic gases with a simple alkaline filter paper method at Sakurajima Volcano in Kagoshima, Japan.
There are many active volcanoes in Kagoshima Prefecture, including Sakurajima Volcano. So, the volcanic disaster prevention is an urgent issue. Also, Hirabayashi of Tokyo Institute of Technology reported that the molar ratio of HCl/SO2 is large during periods of high HCl/SO2 and conversely small during periods of low HCl/SO2 , and that explosions increase one month after the molar ratio of HCl/SO2 increases during periods of no explosions. We decided to determine the composition ratio of volcanic gases (sulfur dioxide, hydrogen chloride, and hydrogen fluoride) emitted from Sakurajima crater in order to understand and predict volcanic activities. Th us, we established a simple collection method for volcanic gases using alkaline filter paper and a quantitative method using a self m ade absorbance photometer so that even high school students could perform the measurement at many points, and we discussed the data from various perspectives. Furthermore, since last year, we have found a correlation between the variation of Cl-/SO2 ratio and the number of eruptions at Sakurajima volcano. Also, a model for the behavior of volcanic gases was developed based on a comparison of the amount of volcanic ash and the number of eruptions.
> 更多
科展作品檢索
On the Application of Inequalities Containing Sums of Minimum/Maximum of Numbers
Retail inventory management is a crucial part of many businesses due to the high profit associated with it as well as the uncertainty around it, especially for industries with short production cycles and a complex supply chain.Proper management ofretail inventories can lead to decreased inventory costs, prevent spoilage and obsoles- cence, and improve customer satisfaction, all of which lead to increased profits for the company.Inthispaper,wefirstproposeextendingawell-knowninequalityandtry to generalize it to other conditions and similar inequalities.The inequality involves multiple variables and how the maximum/minimum values of a subset of the numbers compare to the maximum/minimum values of the whole set of numbers.Our main contribution is applying such inequality in inventory management to help estimate the total cost of inventory management, which would allow us to determine the shutdown pointforaspecificcompanyusingthegeneralizationsoftheinequality.Lastly,weshow thatourestimatesarereasonableandproposesomefutureareaswheremoreworkcan be done.
> 更多