搜尋結果
查詢
the共找到
1526筆。
如查無相關資訊,可至
進階搜尋
進行查詢
科展作品檢索
非牛頓流體於地下結構中的減震效果與減震裝置探討
The damping action and the effective damping structure of the non Newtonian fluid in the gap between basement wall and diaphragm wall
本研究探討臺灣常見的鋼筋華廈、鋼筋及鋼骨大樓,透過於地下室外牆與連續壁間填入非牛頓流體、牛頓流體及輕黏土,比較建物受震時加速度,發現地下結構中設置非牛頓流體減震裝置較牛頓流體、輕黏土更減震。而模擬器搖晃20-50秒時,非牛頓流體能顯著的減震,超過50秒後,非牛頓流體可能因沉澱而減震效果下降;在100秒後,無減震裝置的建築加速度上升,非牛頓流體再次出現明顯的減震效果;不同重心的建築質量分布導致不同的擴溶現象,使減震效果發生變化;較高的建物因力臂較長,重心高時產生較大的加速度。接著觀察光穿透吉利丁凍的偏折情形,發現受力面與地震方向垂直時,牆面受力明顯;若受力面和搖晃方向不垂直,柱的部分受力大,且觀察到力量有轉移的現象。最後,為建築設計超聲波測距模組,即時監測建築下陷或傾斜情形,以利即時修繕及重建。
> 更多
科展作品檢索
The Effects of Background Color on Color Preference
探討不同背景顏色對色彩偏好的影響
色彩偏好影響生活的許多決策,對於背景對色彩偏好的影響,現行兩個色覺理論(對比理論與生態價理論)有不同的解釋,本研究以高中生為對象,旨在探討背景對色彩偏好影響與支持理論,並提出運用方向。 之前色彩定量方式缺乏對敏感度與視錐細胞的考量,本研究發展以中性灰為基礎對不同色彩的定量方法,並以此進行色彩偏好測試。實驗結果發現:顏色偏好會受到背景影響(支持對比理論),背景對各色彩具不同影響力,偏黃偏綠顏色受背景影響較大;綠色與藍色背景提升偏黃與偏綠之顏色偏好而紅色背景則會下降(支持生態價理論),背景亮度不影響顏色偏好。期望研究結果有助於青少年環境與產品設計配色參考,並對未來背景影響顏色的神經機制研究提供基礎。
> 更多
科展作品檢索
Developing a Heart-Rate Monitoring App to Help Families in Identifying Mood Changes for Children Diagnosed With Neurodivergence
This study dives into the benefits of a heart rate (HR) monitoring application to aid families in identifying mood changes in children diagnosed with neurodivergence. Children with neurodivergence often struggle with communicating their emotions, which often results in tantrums or emotional outbursts, and this study plans to address this by creating an app that detects users’ HR to calculate heart rate variability (HRV) and detect when the user’s heart rate variability (HRV) levels become higher than usual. Heart-rate variability is defined as a small variation of the interval between every heartbeat, it’s calculated with the formula of . By looking at the developments of these small variations, it will be 60/𝐵𝑃𝑀 × 1000 easier to notice then the interval for heartbeats are shorter, meaning the body is in need of more blood pumped quickly for support. The app is connected to a heart rate sensor that is worn by the user. The heart-rate sensor frequently uploads data to the app which the app processes and carefully observes while looking for any sudden, dramatic change. The sensor and app was tested and proved to meet the expected requirements of functionality. Four participants with neurodivergence were asked to equip the heart-rate sensor and results showed that different developments of heart-rate variability were able to be detected by the app, these participants varied in their type of neurodivergence as well as their age. As an example, the third participant showed the purpose of the app most visibly, having a resting heart-rate of 86 BPM (697.67 ms) turning into a high 107 BPM (561.68ms) after changing activities. When the user’s sensor detects a sudden spike in heart-rate variability, the app notified the parent account about this change in emotion. This study has supported the relevance of using heart-rate variability to observe changes in mood.
> 更多
科展作品檢索
兩組直線所構造的三角形外心軌跡性質與推廣
本研究源於 2022年數學雜誌《CruxMathematicorum》的一道四邊形動態幾何問題,我們先將此問題設定為三角形,利用綜合幾何方法給出了兩種構圖條件下的三角形外心軌跡皆為圓弧,並且發現兩種圓弧的變換關係以及豐富有趣的性質。值得一提的是,分別對三角形的三個頂點輪換進行第一種構圖得出三個圓弧,這些圓弧恰可組合成三角形的九點圓。回到原始問題的四邊形,我們構造了兩個三角形,透過巧妙轉換頂角與直徑圓變換而給出外心軌跡所在圓弧的兩個定點而解決此問題。 最後探討三角形的形心之軌跡為圓或橢圓的幾何結構是什麼?先考慮具有定角的形心切入,結果發現垂心的軌跡是橢圓,但內心與旁心的軌跡並非二次曲線。再從外心與垂心思考,我們進而給出了該軌跡的內在的幾何結構是歐拉線。值得注意的是,歐拉線上的任意點之軌跡恆為橢圓,並無拋物線或雙曲線。
> 更多
科展作品檢索
神秘的三角格局:塗色規則下的奇幻案圖
本研究在探討數學雜誌《Crux Mathematicorum》2024年公告的題目MA 288.所產生的方格紙圖案分布的規律。我們先解開該題,並透過繪製與分析不同大小的圖形,觀察圖案的規律,並利用此規律求出第 𝑛 列及前 𝑛 列綠色方格數的遞迴關係與一般式。 我們發現在𝑛×(𝑛+1) 的方格紙中,當𝑛為2的次方時,綠色方格圖案會形成一個類似謝爾賓斯基三角形的完整三角形,且每當𝑛增加2的1次方時,綠色方格圖案會利用自我複製的方式形成新的圖案。因此可以把𝑛轉換成二進位的表示法,利用二進位中1的位置與數量推論出方格圖案的樣貌與綠色方格數。 除了利用塗色的方式觀察規律外,本研究還將原問題條件轉換成不同的敘述,方便利用excel繪製圖案,將問題推廣到𝑛×𝑚方格。
> 更多
自然界中,植物以NO₃⁻和NH4+作為主要氮源,在吸收後轉化為麩胺酸(Glu)和麩醯胺酸(Gln)作為第一產物進行基本生理反應,在我們實驗室先前的研究中,發現Gln會誘導阿拉伯芥側根生長、壓力反應和抗病性,所以提出了一種假說「細胞外的Gln是營養氮源,也是一種“危險訊號”」,藉由可能存在的Gln的受體表現。目前我進行了其中三組受體的測試,分別是wall-associated kinase2(WAK2)、wall-associated kinase3(WAK3)和EF-Tu受體(EFR),WAK家族是穩定細胞壁果膠的受體激酶,然而我們實驗中發現WAK3在wak3 muntant的表現是不穩定的。EFR為接收EF-Tu(elongation factor thermal unstable)的模式辨識受體(PRR),參與活化植物防禦及PAMP-triggered immunity (PTI),efr muntant在Gln的誘導下表現了防禦相關基因與水楊酸生成之相關基因。本研究將有助於深入理解Gln在植物防禦和側根生長中的功能及其調控機制,並為未來的作物改良和病害防治提供理論基礎。
> 更多
科展作品檢索
Natural resources utilization for the in-house production of fluorescence lipid nanoparticles
Nanotechnology, a transformative force, has steadily gained traction across multiple scientific disciplines, including physics, chemistry, engineering, and biology. It offers unprecedented capabilities, especially in the realm of nanoscale particles, ushering in new paradigms in various applications. One of the most revolutionary applications of nanotechnology is in the pharmaceutical sector. Here, nanoparticles have transformed drug and vaccine delivery systems, offering both efficacy and precision. Among these nanoparticles, lipid nanoparticles (LNPs) have stood out, especially for their role in delivering nucleic acid-based drugs and vaccines. These LNPs are intricate assemblies composed of lipids and nucleic acid complexes, offering an amalgamation of stability and deliverability. Such properties have rendered LNPs as invaluable tools in enhancing therapeutic efficacy while minimizing off-target side effects. The myriad of nanoparticles available includes the likes of silver, gold, and lipid nanoparticles. However, the emphasis of this research lies with lipid nanoparticles, given their widespread success in the pharmaceutical arena. LNPs have showcased their potential in delivering drugs with low therapeutic indices, emphasizing their capability to act as versatile platforms for novel drug development. Recent advances have further expanded the horizons of LNPs, paving the way for novel antisense oligonucleotides, innovative vaccines, and complex lipid nanoparticle formations. Characterizing these nanoparticles is paramount, not only for the development of novel drugs but also to comprehend their in vivo behavior. Their multifaceted nature, stemming from their unique excipients, core-bilayer design, and varying sizes, makes their characterization a critical step in the research and development pipeline.
> 更多
科展作品檢索
Application of Carbon Aerogels in Lithium-Air Batteries
One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.
> 更多
科展作品檢索
Measuring the large nonlinear refractive index of pigment from avocado leaves by a laser pointer
本研究報告,從酪梨葉利用柱層分析技術萃取出葉綠素-a、葉綠素-b以及類胡蘿蔔素,用來研究其物理性質以及測量非線性折射率(n2)。 當雷射光束照射在置於比色管中的樣本時,中央軸上的強度最高,導致溶液產生了溫度梯度和折射率梯度。雷射光束穿過溶液後,在屏幕上產生了遠場繞射圖樣。這些繞射圖樣的最大半徑(Rm)和暗條紋的數目(N)隨雷射光的功率(P)、光徑長度 (𝓵)、溶液的熱吸收係數(μ)和溶劑的熱光係數(dn/dT)變化。從N對𝓵和N對P的關係圖中,可以計算出溶液的n2。 在本研究中,從酪梨葉中萃取的色素濃度分別是從菠菜和朱槿葉中萃取色素濃度的4.0倍和3.1倍。更令人驚訝的是測得的n₂ 值比石墨烯大100倍。結果顯示,該樣品具有顯著的非線性折射率,使其成為各種光學開關應用的理想材料。
> 更多
科展作品檢索
觀音山火山熔岩與其礦物比例研究
A Study on the Mineral Ratios of Guanyinshan Volcanic Rock
透過親手磨製岩石薄片及礦物比例數據,探討觀音火山熔岩的差異與其差異原因。根據前人研究得知,觀音山經過五次噴發,共有七種不同的火山岩。比對地質圖,尋找各層出露地點共17處,進行田野調查、空拍記錄及樣本採集,並磨製岩石薄片共14片,進行岩相觀察與礦物面積比例計算。 本研究觀察到觀音山熔岩有漸變關係,符合鮑氏反應序列。從橄欖石玄武岩→普通輝石玄武岩→普通輝石安山岩→兩輝石安山岩→紫蘇輝石安山岩→黑雲母角閃石安山岩。 並依據新的田野調查資料,修正觀音山的地質圖資;建立火山噴發歷程模擬動畫;製作立體地形模型,以瞭解對地質地貌關係,皆可做為日後觀音山地球科學教育之參考。
> 更多
科展作品檢索
Mattress Ventilation System
One of the worldwide hidden problems with lack of attention is Bedsores. Simply, These are ulcers, that happen on the areas of the skin that are under pressure while lying on the bed for a prolonged time. This can be infected to anyone in the world. The common group who face these bed sores are..... •Elderly patients, •Spinal cord injury patients, •Stroke patients, •Coma patients, •People who have faced accidents Bed sores develop when the blood supply is cut off for more than 2-3 hours to the skin, (Position changing time depends on the patient's condition) The continuous pressure is the cause for that and also the temperature generated between the skin and the bed surface increases the metabolism of the tissues. When the skin temperature increases by 1°C, the risk of bed sores increases approximately 14 times. So, The skin temperature in the range of 29.4°C to 37.1°C is correlated with the tissue damage score. Not only that shearing and moisture are the other considerable factors for this problem. This infection has 4 stages. Sometimes in the 4th stage of the bed sores can cause death.
> 更多
科展作品檢索
Application of Carbon Aerogels in Lithium-Air Batteries
One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.
> 更多