搜尋結果
查詢 the共找到 1464筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

Nanoparticles and Aqueous Amine-Based Formulation to Develop CO2 Foam for Sequestration and Oil Recovery

Carbon dioxide (CO2) is an important greenhouse gas that helps trap heat in our atmosphere; without it, our planet would be inhospitably cold [1]. It is the fourth most abundant gas in the Earth's atmosphere. It is a byproduct of normal cell function when breathed out of the body, and produced when fossil fuels and organic wood compounds are burned [2]. However, an increase in CO2 concentration in the atmosphere can contribute to climate change and ocean acidification, and exposure to high levels of CO2 can produce a variety of health effects [3]. Human progress and economic innovation have led to increased emissions, causing climate change and affecting all living creatures. Current levels are 36.8 Gt CO2 in 2023 and are expected to reach 54-56 Gt CO2 by 2030 [4]. Figure 1 displays the current atmospheric CO2 measurements at Mauna Loa Observatory without seasonal variations [5].

> 更多

科展作品檢索

線蟲土壤食物網監測模式建立與功能性調節 The Establishment of Nematode Food Web Monitoring Model and Regulation of Soil Functions

為了永續利用土壤生態系服務,本研究分析線蟲族群變化監測土壤食物網,探討線蟲食物網與土壤養分調節相關性,實踐 SDGs中第 2項消除飢餓與第15項陸域生態。首先使用文獻分析法,建構模式觀察線蟲功能群演替,監測線蟲食物網組成評估土壤生態系服務,改善與結合過去僅探討環境干擾方式。觀察線蟲對土壤養分影響,結果顯示線蟲功能群多樣性、族群增長與交互作用 (資源重疊與演替等)可能提升土壤無機氮;不過推測因族群交互作用減弱或微生物過度被捕食,氨化能力在食物網發展初期(六週提升 37%)與後期 (六週僅提升16%)不同,需探討如何延續其氨化能力。將結合植物生長觀察線蟲食物網對植物影響。期望未來新模式進一步評估與標準化,用於監測土壤線蟲食物網組成並調節土壤,在農業管理與生態復育方面做出貢獻,為土壤永續利用提出新的可能。

> 更多

科展作品檢索

橡實代謝物與飛鼠小腸內生菌共發酵產物之應用

This study primarily investigates the components of food residues in the stomach of flying squirrels and the metabolism of the intestinal bacteria Floricoccus tropicus. Using nuclear magnetic resonance (NMR) hydrogen spectrum analysis, the signals of long-chain fatty acids were detected in both n-hexane and 75% ethanol extracts of flying squirrel gastric residues and acorns, suggesting that acorns may be a primary food source for the flying squirrels. The study also identified Floricoccus tropicus, one of the lactic acid bacteria, from the intestines of flying squirrels and discovered its role in the metabolism of fatty acids in acorns. Results showed that polyunsaturated fatty acids significantly decreased during fermentation, indicating that they were converted into short-chain fatty acids with anti-inflammatory properties. In the antibacterial activity experiments, the acorn grease showed no inhibitory effects before fermentation, but after fermentation, the acorn grease exhibited inhibitory effects against E. coli. Furthermore, in anti-inflammatory tests, fermented acorn grease samples significantly suppressed the production of NO and TNF-α in LPSinduced RAW 264.7 cells, with greater inhibition at higher concentrations. In conclusion, the lactic acid bacteria Floricoccus tropicus was found to metabolize fatty acids of acorns into compounds with antibacterial and anti-inflammatory effects.

> 更多

科展作品檢索

非牛頓流體於地下結構中的減震效果與減震裝置探討 The damping action and the effective damping structure of the non Newtonian fluid in the gap between basement wall and diaphragm wall

本研究探討臺灣常見的鋼筋華廈、鋼筋及鋼骨大樓,透過於地下室外牆與連續壁間填入非牛頓流體、牛頓流體及輕黏土,比較建物受震時加速度,發現地下結構中設置非牛頓流體減震裝置較牛頓流體、輕黏土更減震。而模擬器搖晃20-50秒時,非牛頓流體能顯著的減震,超過50秒後,非牛頓流體可能因沉澱而減震效果下降;在100秒後,無減震裝置的建築加速度上升,非牛頓流體再次出現明顯的減震效果;不同重心的建築質量分布導致不同的擴溶現象,使減震效果發生變化;較高的建物因力臂較長,重心高時產生較大的加速度。接著觀察光穿透吉利丁凍的偏折情形,發現受力面與地震方向垂直時,牆面受力明顯;若受力面和搖晃方向不垂直,柱的部分受力大,且觀察到力量有轉移的現象。最後,為建築設計超聲波測距模組,即時監測建築下陷或傾斜情形,以利即時修繕及重建。

> 更多

科展作品檢索

探討影響臺灣周遭海域波浪能蘊藏量的關鍵因素 English Title:Investigation of Key Factors Influencing Wave Energy Potential in the Surrounding Waters of Taiwan

團隊透過分析臺灣台灣周遭八個處海洋浮標測站資料,自2021年1月到2024年10月為止之示性波高、平均週期、平均風速、海溫等資料間之相關性,並試從不同位置測站之海洋條件與大氣因素,來綜合探討影響臺灣周遭海域波浪能蘊藏量的關鍵因素。並透過分析海溫與波浪能變化的關係,試圖瞭解全球暖化平均海溫上升,對臺灣周遭波浪能蘊藏的變化趨勢。 團隊發現影響臺灣周遭海域波浪能蘊藏的因素,除了季節性季風的影響,黑潮主流以及澎湖水道的黑潮支流湧升流,也都 可能 是影響臺灣周遭海域波浪能蘊藏的重要因素。團隊也發現,在臺灣周遭海域波浪能蘊藏與海溫變化有負相關的趨勢,此現象與臺灣中央研究院針對過去70年,全球波浪能的變化趨勢並不一致。其原因可能是臺灣所屬地理位置環境的關係,也可能是分析的數據資料僅有4年無法準確看出趨勢變化。

> 更多

科展作品檢索

Efficient Modelling of Aeroacoustic Phenomena in Seebeck Sirens: A Simplified Approach for Real-World Applications

This paper presents a simplified but mostly accurate model for the acoustic mechanism of Seebeck sirens. We investigate the impact of key parameters, including the number and size of holes, as well as the angular speed of the disk, on the characteristics of the produced sound. The disk is fabricated using fused deposition modelling 3D printing, and we used a brushless motor, an air compressor, and a shotgun microphone to capture the generated sound. An order of magnitude analysis was conducted on the Navier-Stokes equation to formulate a simplified version. These simplifications allowed for a low computational intensity model relating volume flow rate to sound pressure level, which is used to predict the waveform of sound produced. Our findings reveal that the fundamental frequency of the sound can be precisely predicted by only the rotational frequency of the disk and the number of holes, a relationship validated experimentally. Notably, observed asymmetry in the waveform was attributed to skin drag effects, and this hypothesis was experimentally verified. Our model computes a solution in less than half a second on average: far less than the 21h 47min needed for a k−ω turbulent model to compute the same phenomenon. The research presents and verifies a simplified model of acoustic mechanics for the sound generated by rotating systems that require little computational resources, which can prove useful in situations where absolute precision is not required, in exchange for ease of computation. For more precise systems, this model serves as a foundation for quickly generating an initial design, paving the way for subsequent iterations using more comprehensive models. The developed model not only serves as a foundation for efficient preliminary designs but also contributes valuable insights into the intersection of fluid dynamics and sound production.

> 更多

科展作品檢索

Flavored Nanofiber Strips Loaded with Amoxicillin as an Alternative Method for Treating Bacterial Infections in Children

Semisynthetic penicillin, Amoxicillin, is a broad-spectrum antibiotic that is widely used to treat bacterial infections in children suffering ear, nose, and throat infections, genitourinary tract infections, skin infections, and lower respiratory tract infections1. This antibiotic works against both gram-positive and gram-negative bacteria, such as Listeria monocytogenes, Haemophilus influenza, Streptococcus pneumonia , Streptococcus pyogene and Escherichia coli1,2. It shows antibacterial activity by inhibiting dd-transpeptidase, which maintains the integrity of the bacterial cell wall which results in bacterial cell death due to a fragile cell wall3. Nonadherence to medication was associated with 50% of drug-related hospitalizations in children4. In order to improve adherence and influence clinical outcome, it is important to acknowledge the importance of drug palatability to children4–6. The currently available liquid suspension form of this antibiotic is administered to patients through oral/GI routes. It is also available in capsules or tablets for adults7–9. In the gastrointestinal tract, the drug has to withstand variable pH conditions and enzymatic degradation , mucus and mucosal barriers to survive resulting in limiting drug bioavailability10,11. In addition to conventional drug delivery formulations, nanofibers can be used to deliver drugs orally, topically, and through buccal or transdermal routes12. Drug-loaded nanofibers offer many advantages as a delivery system, including their porous structure and their efficient delivery of various drugs and bioactive molecules including hydrophobic and hydrophilic drugs12–14. Considering that amoxicillin palatability can affect children patients’ compliance and due to the advantages of both nanofiber drug delivery system and drug delivery through buccal routes, hence, this project aims to prepare flavored electrospun nanofibers loaded with amoxicillin to mask the unpleasant taste of the drug for treating children with bacterial infection. Nanofibers loaded with amoxicillin can be applied between the child's gum and cheek, allowing the fibers to dissolve in mucus and penetrate directly into the bloodstream.

> 更多

科展作品檢索

Insights into the Anti-Inflammatory Effects and Physicochemical Properties of Polysaccharides Extracted from Selected Medicinal Mushrooms

硫磺菇(Laetiporus sulphureus)和桑黃菇(Sanghuangporus sanghuang)是東亞,特別是台灣森林中的兩種真菌。這些真菌的次級代謝物,特別是多醣,具有抗炎和抗癌的生物效應;其地面子實體長期被當地人作為傳統藥物使用。然而,這些藥用特性及其機制尚未充分研究。本研究旨在分析和量化這些真菌多醣的抗炎效果。從硫磺菇中提取硫酸化多醣,從桑黃菇中提取非硫酸化多醣,並使用水和乙醇進行多步純化。隨後,將純化後的產品餵給巨噬細胞進行體外測試以檢查其抗炎性。硫酸化多醣的最佳濃度為150 ppm,能夠最大程度地降低自由基濃度21.6%,且不影響細胞活力。相比之下,桑黃菇的所有多醣濃度均顯示出增強的細胞炎症,顯示其作為藥物無效,因為沒有去除真菌毒素。相比之下,硫磺菇的硫酸化多醣顯示出其藥用潛力,對生物醫學和生物探索領域具有新啟示。

> 更多

科展作品檢索

柔性明膠電阻式記憶體元件在彎曲下的效能之研究 Study on the Performance of Flexible Gelatin Based Resistive Random Access Memory Devices Under Bending Conditions

本研究使用柔性PET基板,並將Al2O3沉積於明膠上作為介電層,製作電阻式記憶體-Al/gelatin/ITO-PET元件(AGI柔性元件),期望提升基板的可撓性,同時維持元件的基本運作模式。為檢測元件性能,本研究分別在平面及彎曲狀態下測量其電性。透過施加循環電壓於AGI元件,測繪其電流變化圖,並分析元件不同操作狀態下(平面、固定彎曲、動態彎曲)的電性穩定度。研究結果顯示,AGI柔性元件在每次循環間電流變化小,且在不同半徑的 動態彎曲測試中,電流-電壓(I-V)疊合圖的開關比均呈現穩定。綜上所述,AGI柔性元件在兩種彎曲狀態下能夠展現低切換電壓與穩定的開關性能,加上明膠的生物相容性和優異性能,表現出其在穿戴式記憶裝置的發展潛力。

> 更多

科展作品檢索

開發腸道菌外膜蛋白質純化方法及以AlphaFold 軟體對應合適製程 Developing purification methods for outer membrane proteins of gut bacteria and matching the optimal purification process by using AlphaFold.

可再現醫療效益之腸道益生菌關鍵分子是重要蛋白質,蛋白質純化極重要但傳統方法費時耗力,導致發展腸道益生菌保健食品的成本很高。本研究取用助於改善糖尿病和血脂異常的腸道益生菌 Akkermansia muciniphila 外膜蛋白Amuc_1100為樣品,先以傳統方法開發純化製程,利用親和性層析和離子交換層析找出純化臺灣本土菌株isolate 02和國際標準菌株BAA-835之條件及其差異,確認純化蛋白質可維持3日穩定。本研究進行AlphaFold 電腦模型預測蛋白質結構並進行蛋白質序列分析,發現蛋白質本身結構和電性不同才導致isolate 02和BAA-835純化製程條件有所差異。本研究提供全新展望,透過人工智慧將蛋白質結構對應到合適製程,大幅減少研發純化條件的時程,完善蛋白質純化方法學,並得到可量產且品質穩定的純化蛋白質。未來將選用其他臺灣本土 Amuc_1100樣品以擴大驗證及建立蛋白質結構與純化製程資料庫。

> 更多

科展作品檢索

Application of Carbon Aerogels in Lithium-Air Batteries

One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.

> 更多

科展作品檢索

Development and Comparison of a Small-Scale Toroidal Horizontal-Axis Wind Turbine to a Conventional HAWT Design

Wind energy is one of the most promising and rapidly growing sources of renewable energy, although maximizing its efficiency while minimizing noise remains a challenge and limits its widespread adoption. The emergence of toroidal propellers, which have gained popularity for producing comparable thrust levels to traditional drone propellers while producing less noise, could mitigate this. This study aimed to develop a small-scale toroidal HAWT and compare its power and noise output to a conventional rotor design under similar wind velocity conditions. 15-centimeter diameter models of the toroidal and conventional rotors were created in Fusion 360 and simulated using Ansys Fluent to identify the significant aerodynamic characteristics that positively affect the blades’ power coefficient. The toroidal design with the greatest simulated power output at low tip speed ratios (TSRs) was then 3D printed and physically tested in a wind tunnel against the control rotor. The experimental results confirmed that the toroidal design had greater power coefficients at lower TSRs compared to the control rotor. The toroidal rotor started operating at a wind velocity of 3 m/s compared to the control rotor’s 6 m/s, which indicates superior start-up characteristics. While the toroidal rotor produced half the power output of the control at the highest tested wind speed of 7 m/s, it emitted 18 decibels less noise and showed a reduction in discernible noise between frequencies of two to five kilohertz. The results from this study show its potential in low-noise wind turbines within low-wind velocity environments.

> 更多