搜尋結果
查詢
the共找到
1464筆。
如查無相關資訊,可至
進階搜尋
進行查詢
科展作品檢索
Insights into the Anti-Inflammatory Effects and Physicochemical Properties of Polysaccharides Extracted from Selected Medicinal Mushrooms
硫磺菇(Laetiporus sulphureus)和桑黃菇(Sanghuangporus sanghuang)是東亞,特別是台灣森林中的兩種真菌。這些真菌的次級代謝物,特別是多醣,具有抗炎和抗癌的生物效應;其地面子實體長期被當地人作為傳統藥物使用。然而,這些藥用特性及其機制尚未充分研究。本研究旨在分析和量化這些真菌多醣的抗炎效果。從硫磺菇中提取硫酸化多醣,從桑黃菇中提取非硫酸化多醣,並使用水和乙醇進行多步純化。隨後,將純化後的產品餵給巨噬細胞進行體外測試以檢查其抗炎性。硫酸化多醣的最佳濃度為150 ppm,能夠最大程度地降低自由基濃度21.6%,且不影響細胞活力。相比之下,桑黃菇的所有多醣濃度均顯示出增強的細胞炎症,顯示其作為藥物無效,因為沒有去除真菌毒素。相比之下,硫磺菇的硫酸化多醣顯示出其藥用潛力,對生物醫學和生物探索領域具有新啟示。
> 更多
科展作品檢索
Wrong seating around the table
本研究探討在一場圓桌會議中,n人逐一亂序入場找尋各自對應的名牌編號(1~n號)入座,其中1號第一個入場並坐到了k號位,此後入場的人們若發現與自己編號相同的位置是空的,就直接入座;若與自己編號相同的位置被占走了,就以逆時針方向尋找空位入座。在上述的規則下,若共有n 人,且 1 號坐到 k號位的情況,給予與問題相關統計量的組合證明。後續本研究將規則改為1 ~ p號 按照順序進場且皆想坐到 k 號位的前提下,探討了坐錯的人們是怎麼樣的循環和坐錯人數的次數分佈。並多數的研究結果皆與 stirling numbers of the first kind 有相關。 本研究還 探討了共有 n 人,且 1 號坐到 k號位的情況下, 坐錯人數的標準差函數的遞增情況 與對數函數完全曲線相關。
> 更多
科展作品檢索
理論設計與高效率合成三吲哚衍生物應用於癌症標靶藥物
Theoretical Design and Highly Efficient Synthesis of Triindole Derivatives for Targeted Cancer Therapeutics
抗癌藥物的研究一直受到重視,吲哚(indole)衍生物可助抵擋自由基,而二吲哚(Di-indole)衍生物已成為抗癌劑。鈣離子/鈣調蛋白依賴性蛋白激酶 (Ca2+/calmodulin-dependent protein kinase II,CaMKII)之抑制劑為癌症標靶藥物重要研究方向之一,抑制CaMKII可降低各種癌細胞增殖和存活,但目前尚無CaMKII抑制劑藥物。本研究以三吲哚為主架構,發展衍生物作為CaMKII抑制劑,期望可應用於抗癌劑。電腦軟體Discovery Studio2016模擬各種三吲哚衍生物分子模型與CaMKII α(PDB: 2VZ6)之結合能,選出結合能較大之化合物3,並延伸結構/活性(SAR)最佳化,進行一系列高效率藥物合成純化工作。經由送測生物細胞活性,其中先導化合物(lead compound) 3-1對癌細胞之毒性高且對CaMKIIα的抑制效果佳,符合癌症治療上的需求,將繼續最佳化此結構,並進行細胞訊號傳送途徑及動物實驗。
> 更多
科展作品檢索
非牛頓流體於地下結構中的減震效果與減震裝置探討
The damping action and the effective damping structure of the non Newtonian fluid in the gap between basement wall and diaphragm wall
本研究探討臺灣常見的鋼筋華廈、鋼筋及鋼骨大樓,透過於地下室外牆與連續壁間填入非牛頓流體、牛頓流體及輕黏土,比較建物受震時加速度,發現地下結構中設置非牛頓流體減震裝置較牛頓流體、輕黏土更減震。而模擬器搖晃20-50秒時,非牛頓流體能顯著的減震,超過50秒後,非牛頓流體可能因沉澱而減震效果下降;在100秒後,無減震裝置的建築加速度上升,非牛頓流體再次出現明顯的減震效果;不同重心的建築質量分布導致不同的擴溶現象,使減震效果發生變化;較高的建物因力臂較長,重心高時產生較大的加速度。接著觀察光穿透吉利丁凍的偏折情形,發現受力面與地震方向垂直時,牆面受力明顯;若受力面和搖晃方向不垂直,柱的部分受力大,且觀察到力量有轉移的現象。最後,為建築設計超聲波測距模組,即時監測建築下陷或傾斜情形,以利即時修繕及重建。
> 更多
科展作品檢索
法拉第波輔助合成奈米鎳並應用於有機污染物的快速脫色
Nanostructured Nickel Synthesized through Faraday Waves and Its Application to Rapid Contaminants Decolorization
超音波已廣泛用於奈米粒子的製備,然可聽聞音對奈米粒子製備的影響卻少有研究。本研究以簡易喇叭裝置產生可聽聞音並在溶液表面產生法拉第波及內部流動,來輔助製備奈米鎳。法拉第波是一種表面非線性駐波,透過調整容器形狀、振動頻率等,可產生不同波形。本研究嘗試在法拉第波輔助下,以化學還原法及電沉積法製備出不同性質的奈米粒子。SEM量測並比較無輔助、法拉第波輔助、超音波輔助製備出的奈米鎳的形貌、分布的差異。並將其應用於有機物(即剛果紅、亞甲藍、4-硝基苯酚、2-硝基苯酚)之催化還原。而由SEM量測、催化還原結果及理論模擬反應熱可知,法拉第波確實能夠改善奈米鎳的粒徑大小、分散性、對氫的吸附能力及催化還原能力。
> 更多
科展作品檢索
SUSTUNI - SOFTWARE FOR SMART AND SUSTAINABLE DESIGN OF INDUSTRIAL ELECTRICAL CIRCUITS
The theme of this project is to develop software to facilitate and innovate the design of low-voltage industrial electrical circuits. The goal is to develop a program that makes projects more efficient in terms of time, accuracy, and sustainability, automating dimensions such as calculating conductor cross-sections, protections, single-line diagrams, and analyzing with AI at which points industrial electrical circuits can be more sustainable. The 2023 Electric Energy Yearbook of the Energy Research Company describes that electricity consumption increases 2% per year in Brazil, and industrial installations represent the largest part of the national electrical sector (36.2%). As stated in standard NBR 5410/2004, when developing an installation project, an electrical professional works with several processes, depending on several criteria and calculations to present a reliable electrical installation. Minimal errors in calculations can cause damage to equipment, conductors, and individuals present in the installation. Using software to model these circuits optimizes time and brings more confidence to the project. This work aims to differentiate itself in this field by filling in the gaps in existing solutions for the industry, providing support for Brazilian standards, automatically generating single-line diagrams and presenting suggestions for sustainability in the circuits. The program is developed in Python, based on NBR 5410/2004 and engineering works. The software developed allows the user to size different distribution boards, motors and circuits, calculating the cross-section of the conductors/electrical protections, a particular transformer, and generating a single-line diagram in CAD. The program also presents suggestions aimed at sustainability to reduce material/energy costs. Tests were carried out with electrical engineering companies and students in the technical area, where the software presented high precision and very positive feedback from the interviewees, and it can be said that the work achieved its objectives.
> 更多
科展作品檢索
Fabrication of Tandem Dye-Sensitized Solar Cells to Enhance Photovoltaic Performance
Energy has had an enormous impact on the development of technology and is a main factor in humans’ advancement towards an evolved society. Nevertheless, nonrenewable energy resources – which are the most effective in everyday application - have led to changes in the climate, environment, human health, and the world in general [1], which has encouraged researchers to switch to the use of renewable energy sources. Solar Cells are one of the most effective resources that rely on renewable energy. They come in a variety of types, operation methods, and efficiency as shown in Figure 1, including Dye-Sensitized Solar Cells (DSSC), which, inspired by photosynthesis in plants, uses photo-sensitive dye to capture sunlight and generate electricity. DSSCs were proved to have generated a great deal of interest and are one of the most promising solar cells among third-generation PV technologies, due to their low cost, simple preparation, good performance, and environmental friendliness compared to conventional photovoltaic devices [3]. However, their efficiency is quite insufficient for everyday use. Previous studies proved that Tandem DSSCs – which are two dye-sensitized cells stacked on top of each other – are able to enhance cell performance. The light absorption range of a tandem cell is increased because the bottom cell behind the top one absorbs and uses the incident light that was not absorbed by it [4]. It operates as shown in Figure 2, where the light photons excite the electrons of the dye molecules. The electrons are then transported to the FTO (conductive glass) by the semiconductor, which is used in the figure as TiO2 nanoparticles. The electrons pass through the circuit to perform the work, then move to the counter electrode (shown as Platinum). They are then transported by the electrolyte (I-/I3-) back to the dye molecules, and the process is repeated.
> 更多
科展作品檢索
探討影響臺灣周遭海域波浪能蘊藏量的關鍵因素
English Title:Investigation of Key Factors Influencing Wave Energy Potential in the Surrounding Waters of Taiwan
團隊透過分析臺灣台灣周遭八個處海洋浮標測站資料,自2021年1月到2024年10月為止之示性波高、平均週期、平均風速、海溫等資料間之相關性,並試從不同位置測站之海洋條件與大氣因素,來綜合探討影響臺灣周遭海域波浪能蘊藏量的關鍵因素。並透過分析海溫與波浪能變化的關係,試圖瞭解全球暖化平均海溫上升,對臺灣周遭波浪能蘊藏的變化趨勢。 團隊發現影響臺灣周遭海域波浪能蘊藏的因素,除了季節性季風的影響,黑潮主流以及澎湖水道的黑潮支流湧升流,也都 可能 是影響臺灣周遭海域波浪能蘊藏的重要因素。團隊也發現,在臺灣周遭海域波浪能蘊藏與海溫變化有負相關的趨勢,此現象與臺灣中央研究院針對過去70年,全球波浪能的變化趨勢並不一致。其原因可能是臺灣所屬地理位置環境的關係,也可能是分析的數據資料僅有4年無法準確看出趨勢變化。
> 更多
科展作品檢索
ChordSeqAI: Generating Chord Sequences Using Deep Learning
This report presents a novel AI-driven tool for aiding musical composition through the generation of chord progressions. Data acquisition and analysis are discussed, uncovering intriguing patterns in chord progressions across diverse musical genres and periods. We developed a range of deep learning models, from basic recurrent networks to sophisticated Transformer architectures, including conditional and style-based Transformers for improved controllability. Human evaluation indicates that, within the context of our specific data processing methods, the chord sequences generated by the more advanced models are practically indistinguishable from real sequences. The models are then integrated into a userfriendly open-source web application, making advanced music composition tools accessible to a broader audience.
> 更多
科展作品檢索
Utilization of Nano cellulose from date palm waste for improvement of thermal stability in epoxy composite
Nano additives is becoming popular trends nowadays due to its nanosize (1-100 nm). Incorporating nano additives in polymer could increase different properties such as mechanical, physical, electrical and thermal stability (1, 2). Different nano additives has been used such as nano copper oxide, nano silica, nano zinc oxide, nano titanium dioxide but most of these come from synthetic or metal oxides that considered as non-environmentally friendly and harmful to human when exposed or inhaled (3). One of the green materials that become attention by researchers is nano cellulose. Nano cellulose can be extracted in different methods and sources such as from wood, and non-woody resources such as kenaf, jute, bamboo as well as from bacteria such as Acetobacter species(4). This making nano cellulose abundantly available in resources. Nano cellulose can be in the form of nano crystalline cellulose (CNC) or NCC or can be in form of nano fibrillated cellulose (NFC) and bacterial nanocellulose (BNC)(5). This nanocellulose has many advantages that can give improvement in different applications such as mechanical, physical, thermal and improving the biodegradation when added together in different matrices (6, 7). Polymers have a problem in thermal stability while processing. It hard to control and maintain the thermal stability of polymer during processing and most polymers considered to have low in thermal stability except for thermosetting polymers such as epoxy. Epoxy has been widely used in many fields such as coating, adhesive, laminates, castings and many more (8). But the drawbacks of epoxy while using is hard to maintain and controll the thermal properties when processing of this materials and used for long period due to aging and attack by free radicals causing by UV radiation (9, 10). In this study we are incorporating nano additives into epoxy as polymer matrix to enhance and improve the thermal stability of composite by crosslinking the polymer chains with the nano additives. Furthermore, the nano additive used is come from nano cellulose extracted from date palm waste and thus to create an environmentally friendly and sustainable nano additives products.
> 更多
科展作品檢索
法拉第波輔助合成奈米鎳並應用於有機污染物的快速脫色
Nanostructured Nickel Synthesized through Faraday Waves and Its Application to Rapid Contaminants Decolorization
超音波已廣泛用於奈米粒子的製備,然可聽聞音對奈米粒子製備的影響卻少有研究。本研究以簡易喇叭裝置產生可聽聞音並在溶液表面產生法拉第波及內部流動,來輔助製備奈米鎳。法拉第波是一種表面非線性駐波,透過調整容器形狀、振動頻率等,可產生不同波形。本研究嘗試在法拉第波輔助下,以化學還原法及電沉積法製備出不同性質的奈米粒子。SEM量測並比較無輔助、法拉第波輔助、超音波輔助製備出的奈米鎳的形貌、分布的差異。並將其應用於有機物(即剛果紅、亞甲藍、4-硝基苯酚、2-硝基苯酚)之催化還原。而由SEM量測、催化還原結果及理論模擬反應熱可知,法拉第波確實能夠改善奈米鎳的粒徑大小、分散性、對氫的吸附能力及催化還原能力。
> 更多
科展作品檢索
Intellectual security system for industrial enterprises (ISS)
The economy around the world is changing rapidly, with new ways of industrial production being introduced all the time. This is due to the Fourth Industrial Revolution. The main objectives of Industry 4.0 [5] are digitalization and full automation of production processes, which increase productivity and worker safety.
> 更多