搜尋結果
查詢 the共找到 1464筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

快速合成金屬有機骨架複合材料用於微量工業廢氣吸附移除Rapid synthesis of metal-organic framework composites for removal of trace industrial waste gases

本研究開發一種新穎孔洞性吸附材料:金屬有機骨架 (MOF)。MOF 在反應溶液中自組裝形成孔洞結構,透過物理吸附有效捕捉氣相乙酸分子。研發出綠色、快速可在常溫常壓下大量合成三種MOF(HKUST-1(Cu)、UTSA-280(Ca) 及 A520(Al))方法。此外,為提升材料機械強度和應用價值,採用 PVA 聚合技術製備 MOF 複合物,使其造粒型化更易處理,提升商業和環境應用價值。吸附實驗結果顯示,HKUST-1(Cu) 粉末對乙酸移除率高達98%,而HKUST-1(Cu) PVA 複合物達93%,對比活性碳及其PVA複合物(移除率分別為85%和78%)表現更優異。MOF憑藉優異吸附性能和可大量生產低成本優勢,成為極具潛力有機無機氣體吸附劑,可為半導體產業提供一種維持高標準製程環境精密且簡便解決方案。

> 更多

科展作品檢索

Let There Be (Optimal) Light

On average, the agricultural sector uses 70% of water withdrawals worldwide to produce crops1 and contributes to the eutrophication of lakes by using nutrients that are leached from the soils into lakes and reservoirs2. Vertical farming has great potential to remedy some of these issues. By growing plants vertically in controlled environments with artificial light and reusing the water, vertical farms use op to 99% less water3 and can produce up to 10 times the yield per square meter4 compared to traditional greenhouses. This improved efficiency comes at a cost; on average, vertical farms use more than 600% more energy per kilogramme of crop compared to traditional greenhouses5. 55% of this energy use is due to the use of artificial lighting6. Even though a lot of research is conducted on yield optimisation of crops in vertical farming, few research articles focus on the growth efficiency of crops to reduce the energy use in vertical farms. Only a few previous studies have tested photoperiods under 10 h·d-1. This study focuses on reducing the energy costs of light use in vertical farms by finding the photoperiod with highest energy use efficiency for the leafy vegetable arugula (eruca sativa). Energy use efficiency is defined as fresh mass per unit of electricity input (measured in kWh). In this study, arugula plants were exposed to LED growth light, with photoperiods ranging from 0 h·d-1 to 24 h·d-1 (0 h·d-1, 4 h·d-1, 7 h·d-1, 9 h·d-1, 12 h·d-1, 14 h·d-1, 16 h·d-1 and 24 h·d-1) and a PPFD of 800 μmol·m-2·s-1. The photoperiod 7 h·d-1 had the highest energy use efficiency of all photoperiods and, if used in vertical farms, this could account for approximately a 10 percent decrease in energy per kilogramme used in vertical farms (a 4 kWh decrease), with the planting density of 1400 plants per m2. This could amount to a yearly energy saving of 4,000,000 kWh per vertical farm (based on the yearly harvest of the vertical farm Nordic Harvest). This could help make vertical farming a more sustainable plant production for the future and in turn, help farming protect our water resources instead of consuming and polluting.

> 更多

科展作品檢索

Using Focused Ultrasound and Pulsed Ultrasound as a Solution to Viral Infection

Viruses Both enveloped and non-enveloped viruses conceal their membrane-penetrating peptide, usually within a glycoprotein of the virion membrane, inside the coat, or within the virion lumen. Cellular signals expose membrane-penetrating peptides that influence the virus during its entry. Instances of cellular signals regulating virus entry include receptors, enzymes, and substances like proteases, metal ions, and reducing agents. Recently, motor proteins or virus maturation have been seen to regulate virus entry through mechanical processes.

> 更多

科展作品檢索

Measuring the large nonlinear refractive index of pigment from avocado leaves by a laser pointer

本研究報告,從酪梨葉利用柱層分析技術萃取出葉綠素-a、葉綠素-b以及類胡蘿蔔素,用來研究其物理性質以及測量非線性折射率(n2)。 當雷射光束照射在置於比色管中的樣本時,中央軸上的強度最高,導致溶液產生了溫度梯度和折射率梯度。雷射光束穿過溶液後,在屏幕上產生了遠場繞射圖樣。這些繞射圖樣的最大半徑(Rm)和暗條紋的數目(N)隨雷射光的功率(P)、光徑長度 (𝓵)、溶液的熱吸收係數(μ)和溶劑的熱光係數(dn/dT)變化。從N對𝓵和N對P的關係圖中,可以計算出溶液的n2。 在本研究中,從酪梨葉中萃取的色素濃度分別是從菠菜和朱槿葉中萃取色素濃度的4.0倍和3.1倍。更令人驚訝的是測得的n₂ 值比石墨烯大100倍。結果顯示,該樣品具有顯著的非線性折射率,使其成為各種光學開關應用的理想材料。

> 更多

科展作品檢索

快速合成金屬有機骨架複合材料用於微量工業廢氣吸附移除Rapid synthesis of metal-organic framework composites for removal of trace industrial waste gases

本研究開發一種新穎孔洞性吸附材料:金屬有機骨架 (MOF)。MOF 在反應溶液中自組裝形成孔洞結構,透過物理吸附有效捕捉氣相乙酸分子。研發出綠色、快速可在常溫常壓下大量合成三種MOF(HKUST-1(Cu)、UTSA-280(Ca) 及 A520(Al))方法。此外,為提升材料機械強度和應用價值,採用 PVA 聚合技術製備 MOF 複合物,使其造粒型化更易處理,提升商業和環境應用價值。吸附實驗結果顯示,HKUST-1(Cu) 粉末對乙酸移除率高達98%,而HKUST-1(Cu) PVA 複合物達93%,對比活性碳及其PVA複合物(移除率分別為85%和78%)表現更優異。MOF憑藉優異吸附性能和可大量生產低成本優勢,成為極具潛力有機無機氣體吸附劑,可為半導體產業提供一種維持高標準製程環境精密且簡便解決方案。

> 更多

科展作品檢索

大「逆」不道—局部逆境下植物體內傳訊與物質分配機制

When a leaf of a plant encounters stress, how does the plant convey the stress signal to other tissues and manage nutrient distribution? This field of study has been largely unexplored. However, the unique interconnected frond structure of Lemna trisulca, along with the use of a divided Petri dish, is very suitable for handling localized stress and investigating the mechanisms of intracellular signaling and nutrient distribution. Research has shown that when the mother leaf experiences localized stress, it releases healthy daughter leaves to minimize collateral damage to the daughter leaves. Conversely, when the daughter leaves face localized stress, the mother leaf chooses to retain them and continues supplying them with nutrients to support their survival. In-depth studies revealed that stressed daughter leaves accumulate Reactive Oxygen Species (ROS), triggering nutrient distribution by sending a distress signal to the mother leaf. This prompts the mother leaf to use Ca2+ as a signaling molecule to deliver nutrients to the daughter leaves. Selective detachment is regulated and triggered by the interaction between Ca2+ and ROS within the mother leaf. When the mother leaf undergoes stress, Ca2+ acts upstream to induce ROS accumulation at the nodes, sending a unidirectional detachment signal to the daughter leaves. This causes ROS accumulation at the daughter leaf nodes, inducing detachment and thereby reducing the collateral damage the daughter leaf could experience due to the mother leaves.

> 更多

科展作品檢索

PiezoPioggia: Energy Harvesting with Raindrops

MAGALH˜AES, Eduardo De Mˆonaco. PiezoPioggia: Energy Harvesting with Raindrops. 2024. 24 p. Research report – Scientific Apprentice Program, Col´egio Dante Alighieri, S˜ao Paulo, 2024. This project wishes to study and analyze the possibility of generating clean and accessible energy with the plain impact of droplets in the ground. Therefore, it was necessary to use piezoelectric devices in order to convert the kinetic energy of each droplet into electric energy throughout piezoelectric energy harvesting processes, (PEH). Piezoelectricity is a method of clean and sustainable energy generation, developed and explored by several scientists worldwide. Thus, while studying the proprieties of those devices, the project evaluates the present situation of electricity harvesting in Brazil, the benefits of piezoelectric technology and the possibilities it presents to economy and society. Throughout the development the project builds itself upon mathematical equations and experimental results, analyzing the deformation and generated tensions of piezos. Brand new data on the behavior of rain, as well as about the potential it presents for PEH are highlighted throughout the research, reinforcing the value of such process as a sustainable energy generation method alongside with its investment potential, both from governmental and private institutions. The project also deeply characterizes the piezoelectric device studied, diving deeply in its characteristics and evaluating the deformation of the device and treating the data sets with statistical analysis methods, in order to improve the precision of the data presented. All in all, the opportunities of piezoelectric energy harvesting in the rain, nella pioggia, shall be discussed profoundly throughout the project.

> 更多

科展作品檢索

Revolutionizing Metabolic Health: The Therapeutic Potential of Next-Generation Probiotic Akkermansia Strains (Z62, IR119) for Metabolic Syndromes

The human gut microbiome is integral to digestion, overall health, and metabolic disorder imbalances. Recent advancements in fecal microbiota transplantation (FMT) have highlighted the therapeutic promise of restoring healthy gut microbiota in populations with high incidences of diseases. Focusing on fecal DNA samples from healthy Asian individuals, this study examines the potential of novel Akkermansia strains, specifically Akkermansia muciniphila (Z62) and Akkermansia massiliensis (IR119), as next-generation probiotics for mitigating metabolic syndrome. A key aspect of the study is the investigation of short-chain fatty acids (SCFAs), which are produced and play a crucial role in regulating metabolic processes. SCFAs such as butyrate, acetate, and propionate are essential for energy provision to colon cells and exerting anti-inflammatory effects. The methodology involves selecting two Akkermansia strains, analyzing them through 16S rRNA and WGS, evaluating their growth and survival rates under acidic and bile-salt conditions, alongside their cell adhesion capabilities. The study focuses on the production of key short-chain fatty acids (SCFAs) and tryptophan derivatives by bacteria in regulating metabolic processes, as well as their anti-inflammatory effects on colon cells. Through in vitro assays, both strains exhibited survival in acidic/bile-rich conditions, though Z62 demonstrated superior adhesion to Caco-2 cells, suggesting a higher colonization potential. Metabolomic analysis revealed both strains produce SCFAs, including propionic and acetic acids, and indole metabolites, such as indole-3-propionic acid and indole-3-acetic acid, which are known to influence lipid metabolism and insulin sensitivity. In adipocyte cell models, IR119 significantly reduced lipid accumulation, while Z62 increased lipid presence. Furthermore, IR119 reduced pro-inflammatory cytokine levels, including IL-6 and TNF-α, suggesting potential for inflammation mitigation. The future potential of IR119 as a therapeutic probiotic is extraordinary in addressing complex metabolic and inflammatory diseases, which open new avenues for managing chronic inflammatory conditions like type 2 diabetes and cardiovascular disease. Future clinical trials could refine IR119’s efficacy, positioning it as a leading probiotic in preventive and therapeutic contexts.

> 更多

科展作品檢索

Application of Carbon Aerogels in Lithium-Air Batteries

One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.

> 更多

科展作品檢索

Greenhouse Gases Reduction: Conversion of Methane and Carbon Dioxide into Clean Energy

In the upcoming years, both population and energy consumption are expected to increase dramatically [1]. Industrialization has led to a dramatic shift in the energy environment [2], with predictions of a 57% increase in demand for energy between 2002 and 2025 [3]. In addition to organic materials like trees and solid waste, fossil fuels like coal, natural gas, and oil provide more than 90% of the world's energy needs. Their overuse has resulted in the release of climate-altering greenhouse gases like carbon dioxide (CO2) and methane (CH4) into the atmosphere [4]. Scientists and other stakeholders are putting more emphasis on finding solutions to global warming, increasing energy production in order to meet increasing demands, and decreasing emissions of greenhouse gases. Using greenhouse gasses to make useful chemicals or fuels is one solution to both problems [5]. This motivated researchers to investigate the potential of CO2 and CH4 as clean energy sources. The process of dry reforming of methane (DRM) has been identified as a potentially successful strategy for transforming CO2 into marketable syngas with a balanced H2/CO composition [6], [7], [8], [9]. The economic viability of DRM, the reactor type, the availability of raw materials, and the intended use of the produced syngas are all-important considerations. Though DRM is gaining popularity, maintaining its long-term stability is difficult due to carbon accumulation from CO disproportionation and methane degradation [10], [11]. The catalyst used, as well as other parameters like as pressure, temperature, feed concentration, and reactor size, are critical to the process's effectiveness. In this scenario, a nickel catalyst on a La2O3/SiO2 substrate with microspheres and a core-shell structure will be developed to improve the conversion of greenhouse gases into profitable syngas. This catalyst is projected to improve the efficiency and performance of the DRM process significantly.

> 更多

科展作品檢索

柔性明膠電阻式記憶體元件在彎曲下的效能之研究 Study on the Performance of Flexible Gelatin Based Resistive Random Access Memory Devices Under Bending Conditions

本研究使用柔性PET基板,並將Al2O3沉積於明膠上作為介電層,製作電阻式記憶體-Al/gelatin/ITO-PET元件(AGI柔性元件),期望提升基板的可撓性,同時維持元件的基本運作模式。為檢測元件性能,本研究分別在平面及彎曲狀態下測量其電性。透過施加循環電壓於AGI元件,測繪其電流變化圖,並分析元件不同操作狀態下(平面、固定彎曲、動態彎曲)的電性穩定度。研究結果顯示,AGI柔性元件在每次循環間電流變化小,且在不同半徑的 動態彎曲測試中,電流-電壓(I-V)疊合圖的開關比均呈現穩定。綜上所述,AGI柔性元件在兩種彎曲狀態下能夠展現低切換電壓與穩定的開關性能,加上明膠的生物相容性和優異性能,表現出其在穿戴式記憶裝置的發展潛力。

> 更多

科展作品檢索

New Properties of Miquel Point

本研究先觀察著名的密克定理(Miquel theorem)與密克點(Miquel point),我們創新給出了新的研究項目,關注密克點𝑃與密克三角形的頂點所構成直線和原三角形𝐴𝐵𝐶三邊直線的其餘六個交點,這是前人沒有觸及的研究項目,從而定義旁接三角形與衍伸三角形。 我們先針對特殊型(直角)的構圖,發現滿足兩個衍伸三角形的有向面積 [𝐴1𝐵1𝐶1]=±[𝐴2𝐵2𝐶2] 時,𝑃 點形成的軌跡為原三角形的 Kiepert hyperbola 與外接圓,這個是有趣且重要發現,我們也進一步給出其幾何必然性。進一步考慮 [𝐴1𝐵1𝐶1]=𝑟[𝐴2𝐵2𝐶2] 時,則刻劃出 𝑃 點軌跡為圓錐曲線系。在前面的基礎下,再針對一般型(任意角)的構圖,若 𝑃 點位於原三角形外接圓及Kiepert hyperbola 與 Steiner circumellipse 的線性組合曲線上,此時兩個衍伸三角形 𝐴1𝐵1𝐶1 與 𝐴2𝐵2𝐶2 的有向面積比值為定值,且兩者恆為相反數。

> 更多