搜尋結果
查詢 the共找到 1526筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

PBC~ A home-use detection device for brain tumors that compress the brain stem and optic nerve

腦部腫瘤是沉默殺手, 藏匿在腦中數十年。 一旦發作,通常都會造成巨大的影響。雖有數種高階儀器,可以檢測。但檢測過程繁複、 等待時間以及價格, 對於民眾都是不小的負擔。 腦部腫瘤的診斷方式為: 神經內、 外醫生會用筆燈對患者做初步的瞳孔光反應檢查。 藉由患者瞳孔縮小的速率,判斷是否要安排進階的檢查。但此行為仰賴醫生的經驗,沒有統一的方法及數據可供判斷。 本研究設計一款成本約$1,300 元, 重量僅 159 g,圓柱直徑與柱高皆約為 7cm 的隨身裝置。 藉由 MCU 控制攝影機, 頂部 1.44 吋 TFT 螢幕可即時顯示患者眼部狀態,檢查結果計算後, 也會立即顯示在螢幕上。除提供醫護人員即時數據化的解讀患者狀態。更協助醫護人員在做瞳孔光刺激檢查時,有科學化的標準。

> 更多

科展作品檢索

少數決之進階討論

「少數決遊戲」就是針對N個玩家詢問一些只能回答是或否的問題,而問題回答不必符合實際狀況,由少數一方獲勝,這個部分的定義與少數派賽局(Minority Game)中的定義相同,不同處為獲勝者須進入下一輪的問題,直到剩下一位或兩位玩家為止,由剩下玩家獲得最後的N單位獎金,但所有人需償還原來遊戲開始時所付出1單位的代價。前作「詐欺遊戲之少數決」[1]即對該問題作詳細的探索,但僅限於一組結盟人數。本作品是將前作內的獲利期望值與演算法作進一步的發展討論,並對結盟人數超過必勝結盟人數時的期望值變化做討論,得到賽局理論中的「少數派博弈」類似的結論。本作品更進一步討論兩組結盟人數的結果與期望值,後續的變化有些類似賽局理論。

> 更多

科展作品檢索

Explorative Development of Ford Circle and Sierpinski Triangle in Hyperbolic Geometry

Explorations in mathematics are limited due to the negative image and perspective about Mathematics itself in high school. However, some topics in mathematics are found interesting in high schools such as geometry and sequences. Therefore, this research will look at the explorative development of Ford Circle that creates some interesting results while combined with other theories and geometry. The main focus of this research is to address and explore the ford circle with its connection to the Sierpinski Triangle in hyperbolic geometry. The investigation and exploration will focus on the properties of geometry in the hyperbolic plane, the fractal geometry of Ford Circle and Euclidean fractals through a hyperbolic perspective that brings a fascinating correlation between all the topics discussed in this research.

> 更多

科展作品檢索

Carbone monoxide filtre

Carbon Monoxide is a very toxic and dangerous that threatens our life and can cause sudden illness and death. It is the most abundant, by mass, pollutant gas generated by the engine due to the lack of oxygen and thus presented in our lives. It is true that the oxidation catalyst absorbs carbon monoxide from the exhaust of cars during combustion. But that is not enough, the catalyst is only effective when the exhaust temperature is high (more than 400°C) which is not available in a short path. To protect ourselves from this toxic gas, we must find solutions and innovative ideas to fulfill this objective. And this is how our project was created. Our focus in this project is to create a filter that can absorb carbon monoxide using the minimum of energy possible. It will be more efficient unlike the traditional method that not only needs high range of temperature (higher than 400°C) but also takes a long period for the reaction to occur.

> 更多

科展作品檢索

「餘」霞成綺----利用組合數探討 Stirling Number of the Second Kind Triangle Fractal 與質數同餘性質

本研究旨在利用組合數來分析第二類斯特靈數在模質數下的性質。研究分為五階段:第一階段我們參考O-Yeat Chan等人的論文,並改良了其證明過程,得到一個同餘組合數。第二階段利用第一階段的奇偶性定理發現(3n n)與𝑆(2𝑛,𝑛)同餘mod2並改良論文證明,使得證明更易推廣。第三階段我們更推廣到更一般的結論:滿足𝑆(𝑝𝑛, 𝑛)≡(p'n n)(𝑚𝑜𝑑2)時,p與p'是線性關係。第四階段與第五階段繪製熱圖時,我們發現圖中存在謝爾賓斯基三角形,對此進行了研究,並成功證明斯特靈數三角形在模2與模3下具有碎形結構與謝爾賓斯基三角形,這是文獻中都沒有探討過的。

> 更多

科展作品檢索

Predict the precise time that the sunset cloud appeared.

雲彩是其中一個在世界上最奇妙的自然現象。在其中也隱藏著巨大的觀光經濟利益。因此,我們想要建立一個系統以預測晚霞雲彩出現的時間,以幫助台灣的觀光業。 本研究將藉由柯西公式、折射反射相關定理以及其他由論文貢獻的輔助公式提出一個計算模型,以計算預測晚霞雲彩出現的時間以及光的路徑。自動化的部分,包含溫度、壓力以及濕度,我們藉由政府的公開資料平台以及衛星公開資料進行靜態網頁爬蟲抓取。雲層高度我們則是透過動態網頁爬蟲,逐一從AccuWeather公開網站上爬取相關資料以利計算。我們將爬取的資料以及所提出的模型計算後以15分鐘作爲一個區隔,提供使用者準確的時間觀賞雲彩。 透過此模型以及爬蟲擷取資料計算得到的結果,我們可以得到接近90%準確率的預測結果。因此,我們能夠準確地為用戶提供正確日落雲彩出現的時間。

> 更多

科展作品檢索

群蛇亂舞之翻天覆地

我們研究的問題源自於〝棋盤上的蛇〞(Snakes on a chessboard) ,是由教授Richard Stanley所提出。問題如下:在 棋盤形格子上,蛇由任意一格出發,但蛇的走法只能往右→,往上↑,或停住。若此蛇已停住,將由另一條蛇來走,且不同蛇走過的格子不可重疊。證明:將 棋盤形格子完全覆蓋的總方法數為費氏(Fibonacci)數列某些項的乘積。 我們以〝生成格〞概念來解決問題,藉由生成格建立二維棋盤形格子〝蛇填充數〞與費氏關係,並試圖拓展三維空間棋盤情形,在過程中發現藉由〝生成矩陣〞可以組成空間棋盤的〝生成格〞,並以此解決p×q×r的空間棋盤問題。 2022年9月,在網站The On-Line Encyclopedia of Integer Sequences上發現由教授 Greg Dresden及其學生Aarnav Gogri提出的數列,與我們2022年3月於高雄市發表的科展作品中的一組數列完全對應,甚而對此數列的原問題Tiling a Hexagonal Strip with Triangles and Diamonds,我們的作品還能做進一步延伸探討。

> 更多

科展作品檢索

Automatic Destination Coordinating Robot based on Openvino

In this project, we created a function integrated onto a Lingao Chassis that allows the robot to use Slam and Gmapping to successfully navigate its way to the most convenient destination for the user, while avoiding any obstacles on the way, improving the default Gmapping errors.

> 更多

科展作品檢索

形心與多個外接圓建構的幾何性質

2023年9月數學雜誌《Crux Mathematicorum》刊登有趣的三角形內心的幾何問題,我們先證明了原命題的長度性質,再創新刻劃出有趣的面積不變量。隨後將內心推廣到旁心、垂心與外心的建構,並且證明僅此四心的建構下才有長度與面積不變量。值得一提的是,除了前述的定量項目外,我們也發現四種建構下的三線共點之定性性質,同時刻劃四種建構的關聯性是漂亮的等角結構,這是本研究亮點。推廣到多邊形,我們發現本質的幾何結構為截線的角平分線性質(內心與旁心的結合),從而將此問題轉換成一般性問題,並給出了豐富的等長、等角、等面積之性質,以及連線多邊形恆為圓外切多邊形。

> 更多

科展作品檢索

格點多邊形的邊數最大值及其作圖法探討

在先前的研究中,特定的格點多邊形如正方形與直角三角形曾經被探討過。任意格點多邊形性質被歸類於資訊研究,目的為用程式估計當範圍很廣或邊數很多時格點多邊形性質的數值解。 先前研究中,作者已針對格點多邊形的性質進行初步的探討,本研究進一步補足先前研究的缺陷:用數學化的方式探討格點多邊形的邊數最大值。研究當中探討的多邊形包含凹多邊形及凸多邊形,研究者改良先前研究中的「迂迴作圖法」,提出新的「對稱作圖法」,以「定義基本構形、先作短邊、再作中間」的順序,確保必定可在特定範圍內建構出符合最大邊數解的格點多邊形;並以數學歸納法證明當矩形範圍短邊為12單位以上時,必存在格點數與邊數相等的格點多邊形,達成重要的突破。 本研究推導出格點多邊形的邊數最大值如下式。運用本研究的結果,將有助於在有限區域或空間中依照特定規律設計最大路徑,例如遊樂場迷宮、駕訓班車道、或積體電路設計。 S(n,m)={█(4 {if n=1∨m=1}@3n+1 {if n=2∨m=2}@24 {if m=n=4}@(n+1)(m+1) {otherwise})┤

> 更多

科展作品檢索

Revolutionizing Potato Agriculture: Harnessing Machine Learning Techniques for Disease Detection and Management

Aim: The aim of this study is to make a disease-predicting model trained on data from weather stations and API using machine learning that gives the farmer the ability to predict crop diseases before they set in, allowing them to take timely preventative measures and reduce wastage. Materials and Methods: In this study the Internet of Things (IoT) sensors throughout agricultural fields of potato crops in Jafferabad, Depalpur Punjab. The sensors collect real-time data on environmental conditions, such as precipitation, air temperature, relative humidity, wind speed, and direction, Dew Point, VPD, and the Delta T values, to identify subtle disease indicators and patterns within the environmental data. Our novel machine-learning program makes use of the data collected by the weather station and analyses them. Results: Using the data, one predictive statistical method using Python 3.8.0 was created which uses the data from the weather station which can predict diseases before they set in.

> 更多

科展作品檢索

Safe CrossWalk (SCW)

Safe CrossWalk (SCW) is an innovative solution designed to enhance pedestrian safety at crosswalks, addressing the alarming issue of 270,000 pedestrian fatalities worldwide each year. By integrating advanced sensors, artificial intelligence, and real-time communication, SCW creates safer and more efficient urban environments. The system comprises three key components: SCW Strisce, a smart crosswalk device that detects pedestrian movement; SCW Car, a vehicle-integrated system that alerts drivers; and SCW AI, which processes data to optimize traffic flow and safety measures. SCW offers a proactive approach to reducing accidents through detection, alerts, and data-driven optimization. The solution not only improves safety but also supports urban planning by providing valuable insights into pedestrian and vehicle behavior. SCW aligns with the growing demand for AI-driven technologies in Smart Cities, presenting a scalable and cost-effective model for implementation. By fostering collaboration with municipalities and insurance companies, Safe CrossWalk aims to transform urban mobility, saving lives and creating smarter, safer cities.

> 更多