搜尋結果
查詢 ���共找到 14829筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

真空能加速醃製食物?高壓可以嗎?探究氣壓對醃製速率的影響

本實驗為了探究在常壓、真空、負壓和高壓…等不同條件下對食物醃製效果的影響,以白蘿蔔為醃製對象,利用各種裝置改變氣壓進行一系列研究。 由實驗得知白蘿蔔的醃製效果為6塊紅磚和7塊紅磚高壓醃製>負壓8cm-Hg>負壓4cm-Hg>真空>常壓。高壓醃製相對於其他氣壓條件的表現為最佳,僅需6塊紅磚重壓在保鮮袋上即可。至於負壓醃製的效果隨著負壓值的增加,白蘿蔔醃製面積有增加趨勢。 本實驗的高壓醃製相對於負壓醃製所需要的技術門檻、費用皆較低,又可有效提升醃製效果,是不錯的醃製選擇。不建議購買「市售真空抽氣棒」,因功率小、吸力差,未如產品說明書上所說可使保鮮罐達真空狀態。如果對醃製效果沒有太過苛求,真空保鮮袋的醃製操作更為簡單方便。

> 更多

科展作品檢索

點糞成金—堆肥蚯蚓糞菌促進農作物生長能力之分析研究

本研究從三種堆肥蚯蚓(歐洲紅蚯蚓、印度藍蚯蚓、非洲夜蚯蚓)的糞土中分離出7株可促進油菜、番茄、草莓生長,並具有協助農作物抗逆境潛力的微生物。菌種鑑定後發現分屬於Glutamicibacter或Arthrobacter、Lelliottia、Pseudoxanthomonas、Bacillus或Priestia、Lysinibacillus等屬。菌株大多具備可分泌生長素、胞外多醣,固氮,分解果膠、纖維素、木質素,可耐鹽,耐高溫能力,我們認為這些糞菌未來將可運用於農業上,減少化肥使用,並減緩氣候變遷對農作物造成的傷害。

> 更多

科展作品檢索

「麵麵」俱到—探討影響麵團韌性與彈性之不同因素

為揭開「為何有的麵團彈牙、有的卻軟趴趴」的謎團,從發酵時間下手,結果發現時間越長,彈性和韌性就像漏氣的氣球般漸漸消失。那加多一點酵母呢?實驗後麵團反而更無力,像睡過頭一樣軟趴趴,我們驚覺,發酵速率才是關鍵! 轉向冷藏發酵,意外發現經過低溫「歷練」後的麵團更有韌性。接著加小蘇打,結果像打散的沙堡,彈性全失,推測是麵團原本的結構被破壞。 於是我們改走「澱粉之路」,發現加入富含支鏈澱粉的糯米就像讓麵團裝上彈性肌肉,彈性與韌性大大提升!而後經多次實驗調整比例,成功找到最佳配方。 最後設計「嚼勁實驗」,結果證實彈性與韌性與實際咀嚼感呈正相關。我們也將持續探索這條「麵團之路」,發掘更多有料又好咬的美味秘密!

> 更多

科展作品檢索

鋁空氣/二氧化碳電池-自製氣瓶探討電池效能

近年來溫室效應日益嚴重,我們注意到可利用氣體作為正極的空氣電池,並思考是否能將工業排放的CO2儲存後作為正極氣體並轉換成電能。本研究重點在基本電池和正極氣體兩部分,首先思考如何製作效能高的鋁空氣電池,再嘗試以CO2取代空氣,並找出增進鋁二氧化碳電池效能的方法,研究出能消耗CO2並轉換成電能的電池模組。實驗結果顯示:(1)最佳電解液為鹼性3.0 M KOH(aq);(2)純氧為最佳單一氣體;(3)三乙醇胺為最佳改質劑;(4)驗證CO2能參與反應;(5)CO2 80%時電壓最高;(6)設計出鋁空氣電池組能長時間穩定輸出5.7 V;(7)最終製作出的鋁二氧化碳電池組能長時間平均輸出電壓2.62 V。

> 更多

科展作品檢索

白浪滔滔我不怕-消波塊與海岸保護

本研究透過3D列印製作消波塊與自製造浪機,並用海浪沖刷粉筆模擬岸邊侵蝕效果,尋找減緩海浪岸侵蝕方法。 本研究製作兩種造浪機。大型版:壓克力板製水缸,用活塞推動造浪板,因漏水問題,改良小型版;小型版:採現成魚缸、TT馬達配合連桿帶動造浪板。小型版波形更流暢。 首先,確定粉筆泡水25分後重量趨穩定;在單排測試中,林克塊減浪效果最佳。實驗亦發現消波塊離岸越近、裸露體積越多,減浪效果越好。增加排數方面,小浪排數越多效果越佳,大浪下則需至少兩排以上才具顯著效果,綜合成本與效益,建議使用兩排設計。 針對家鄉情境,設計A至D四種配置,D型適合冬季東北季風大浪條件,如東北向海岸;C型則適用於港口等平靜海面。

> 更多

科展作品檢索

望”桃”興”炭”-自製生物炭批次反應淨水槽

本研究以果園回收的水蜜桃果核製備的生物炭為主題,透過製備條件、吸光值濃度檢量線、電沉積反應去污能力的測試,探討比較生物炭與市售活性碳對離子與非離子污染物的吸附能力,進而為彌補活性炭在吸附金屬離子汙染物能力較弱的缺點,自製電沉積與生物炭的批次反應淨水槽,探討其同時處理離子與非離子污染物的效果。 結果發現,利用雙層陶罐間填充碎木炭提升隔氧性,將水蜜桃果核以高溫 900燃燒 2 小時炭化生成生物炭。生物炭對於非離子染劑吸附能力與市售活性炭相當,而自製的批次反應淨水槽,能由 arduino 連動自動切 換進料,有效降低非離子汙染物濃度。目前積極尋找反應條件以提升離子污染物的清除速度,期待本設備能提供一個新方向,降低廢水處理成本。

> 更多

科展作品檢索

「果」然有酒,過剩水果的發酵新生機

在這個計畫中預計透過發酵作用,將過熟或剩餘的水果轉化為酒精,以實現資源回收與環境保護。我們選擇含糖量較高的水果(如鳳梨、火龍果、柑橘、葡萄等),壓碎後加入酵母菌,在適當溫度下發酵,促使糖分轉化為酒精與二氧化碳。發酵完成後,利用蒸餾法獲得初步的蒸餾酒精。 此外,測試不同水果的酒精產量、溫度對發酵效率的影響,並分析蒸餾後酒精的濃度與產率。我們最終將驗證所得酒精的殺菌效果,探討其應用於日常環境消毒的可行性。由於有效消毒的酒精濃度需達 75%~78%,我們將進行多次蒸餾,提高酒精濃度,並記錄細菌與微生物的活動情況,以確認其可用性。此結果不僅能減少食物浪費,還能運用科學方法將剩餘水果轉化為有價值的清潔資源。

> 更多

科展作品檢索

空氣鳳梨的水之呼吸—利用3D列印技術探討空氣鳳梨鱗片對於水氣收集之影響

我們觀察到不同種類的空氣鳳梨葉面上鱗片形狀、高度及密度等方面, 有著不同的差異 因此我們決定探討這些鱗片變化對於水氣吸收的影響。利用Autodesk Fusion軟體設計出形狀、密度都不相同的空氣鳳梨鱗片模型 以3D列印機製作模板 並模擬不同模板收集水氣的情況,得到到的據利利用GAB模型公式 算出集水力、集水效率及有效集水表面積,得發現基本單位構形為四邊形的模板, 在平面及傾角為45度時, 有良好的有效集水表面積得基本構形為六邊形的模板 當傾角為30度時, 有最大的有效集水表面積得而模板的基本單元愈密集 及與地面的夾角愈小 則有效集水表面積則愈大得綜合以上所述 我們將研究結果做出集水效力最佳的模板 希望能為增加水資源的方法盡一份心力。

> 更多

科展作品檢索

「菊」躬盡「萃」

本研究以萃取具多酚結構的天然植物(薑黃、芭樂葉、蝶豆花、金針花、臺灣杭菊1號花)為主題,透過自製 UVA和UVB的檢測裝置,探討不同變因下各萃取液的抗UV成效,結果顯示「杭菊花萃取液」具有最佳成效。 進一步比較杭菊1號花(白雪)和杭菊2號花(黃金菊)不同部位萃取液的抗UV成效差異,研究發現杭菊1號花瓣萃取液最具抗UV功效。因此將杭菊1號花瓣濃縮萃取液依適當比例調製成不同配方的「天然菊萃防曬乳」,並與「市售防曬乳」進行比較實驗,結果顯示自製防曬乳配方9對日光的UV遮蔽率可達98.0%,確實媲美甚至優於市售防曬乳的實際功效。

> 更多

科展作品檢索

「泡生溶溶」---泡泡除塑淨水法的研究

本研究透過不同介面活性劑來吸附海洋微塑粒,初步發現,無患子的親油性最好,TDS值可作為微塑粒濃度的檢量線。為了解介面活性劑的親水性值(HLB值)對起泡力及清除率的影響,加入HLB值為4的白蠟油(油性介面活性劑)進行實驗,發現海塑粒無患子起泡效果最好。泡泡水去除海洋微塑粒效果約為8.3%,無患子溶液約為9.7%,白蠟油約為60.7%,故白蠟油的清除效果最佳,但並不天然。後來,我們發現了天然的親油性介面活性劑―大豆卵磷脂,無患子與其的起泡比例以7:3為最佳,且單純大豆卵磷脂的清除率高達84.14%為目前最高。最後,我們發現此起泡裝置能清除真實海水中37.55%的微塑粒。

> 更多

科展作品檢索

“魔法隱身與穿牆術”-全反射與光穿隧效應

自然課學過反射、折射和稜鏡色散,於是利用壓克力和不同液體來探討全反射和光穿隧現象,發現降低表面粗糙度能減少散射,以利觀察雷射光路徑;而紅光和紫光的折射角差值可作為色散的簡易指標。此外,液體溫度、濃度及相變化也會影響臨界角;結合不同臨界角可達成「魔法隱身」;結合不同全反射,則可應用於液體高度警示。 同時也探討全反射在介面形成的漸逝波(Ref.[1]),利用液體填入介質空氣縫來降低折射率落差,或是將空氣縫隙減小到幾微米以下,都能讓漸逝波穿越空氣縫來實現「魔法穿牆」,此現象稱作光穿隧(optical tunneling)效應(Ref.[1]),或受抑全反射(frustrated total internal reflection) (Ref.[2]),未來可應用在精密測量領域。

> 更多

科展作品檢索

舞動靜默—空間迴音問題探討

本研究起因於學校表演藝術課教室的迴音問題,影響學習專注與舒適度。為改善此現象,本研究針對空間音場進行改善實驗,探討不同布料材質、不同樣式窗簾、不同吸音孔形狀、不同吸音孔深度,吸音與減少迴音的效果。研究使用手機應用程式產生定頻音源,透過自製音場實驗箱,搭配噪音計測量吸音量與殘響時間。 研究主要發現如下: 柔軟性高的布料具較佳吸音與減少迴音效果。 波浪簾吸音與減少迴音效果皆優於紙捲簾與百葉簾。 孔洞為圓形之吸音板比正方形或正六邊形更能有效吸音與減少迴音效果。 孔洞深度較深之吸音板,吸音與減少迴音效果越明顯。 透過本研究的結果應用,選擇合適的吸音材料與孔洞設計,可以有效改善空間音場環境,提升學習成效。

> 更多