搜尋結果
查詢
���共找到
14829筆。
如查無相關資訊,可至
進階搜尋
進行查詢
科展作品檢索
Utilizing Flavonoids From the Invasive Species Pilea Melastomoides and Daucus Carota as Well as the Protein PTK-2 to Create a Skin Gel Aimed for Burn Wound Healing.
Burns are a major global health concern especially in developing countries like 印尼, where southeast asian women experience the highest burn incidents globally. Burns can cause severe physical and psychological impacts, with treatments that are critical to reduce complications. This study focuses on the development of organic, cost-effective burn gels using flavonoid compounds which are Quercetin and Myrecetin which are taken from pilea melastomoides leaves, a wild 印尼n plant and carrot (Daucus Carota). These skin extracts aim to accelerate wound healing, minimize pain and prevent infection. The gel formation involves extracting active compounds using 96% ethanol as it has been effectively used for extracting a wide range of bioactive compounds to preserve their quality by preventing microbial contamination, and ensures a high yield of active ingredients suitable for topical applications. Then it goes through a process of Phytochemical screening to confirm the presence of flavonoids by using the Shinoda test. The formulation process included dissolving the HPC-m (Hydroxypropyl Cellulose) as a gelling agent, then adding plant extracts (pilea melastomoides leaves and carrot), as well as combining other ingredients such as propylene glycol, sodium benzoate, sodium metabisulfite, and disodium EDTA. The gel was stirred thoroughly to ensure uniformity and left at room temperature for 48 hours to attain the required consistency. The gel that was formatted went under various quality assessments, first being organoleptic testing. This test is used to evaluate its physical characteristics which includes color aroma, and consistency which confirms a stable dark green appearance and a natural strong scent from the plant extracts. The homogeneity test is used to verify the uniformity distribution of active compounds across the gel, to ensure a consistent efficacy. The pH test showed the gel’s acidity level which remained the safe range for skin application. Additionally, the spreading ability test demonstrated the gel’s excellent application properties, with consistent results across trials. Subsequently, the in silico analysis was conducted to predict the behaviour of specific flavonoid compounds used which is the myricetin and quercetin, highlighting their potential anti-inflammatory and antimicrobial activities. Further bacterial contamination tests confirmed the gel’s antimicrobial efficacy, reducing the risk of infection in wounds. This study demonstrates that the gel, formulated with pilea melastomoides leaves and carrot skin extracts, effectively utilizes flavonoids and other phytochemicals to reduce inflammation, promote tissue regeneration and retain moisture, which fosters an optimal condition for wound healing. This organic and sustainable burn treatment utilizes locally sourced ingredients, providing a natural solution that speeds up recovery, reduces pain and prevents infections. The results highlight its significant potential for wider healthcare use, especially in resource-limited environments.
> 更多
科展作品檢索
DSUP: New Research On The Implementation Of Radioresistance In Cellular Systems
In radiation treatments and manned interplanetary space travel, radiation is one of the biggest problems. The radiotolerance of cancer cells makes it necessary to apply high doses to surrounding healthy tissues by subjecting the cells to heavy stress. With regard to space travel (which involves a minimum travel time of 6 months) (1,2) the danger concerns cosmic radiation which is capable of inducing genetic mutations that, in turn, can evolve into very serious pathologies, such as cancer, damage to dendrites consequently compromising synapses. The project is aimed at developing a technology that can address these issues and aims to make human DNA radioresistant. This study involves a nucleosome-binding protein called DSUP (Damage Suppressor Protein) unique to the tardigrade Ramazzottius Varieornatus and the subject of its radioresistance. It can theoretically safeguard genetic material damaged by radiation. *Internship theme at the Pino Torinese Astronomical Observatory and the DISIT-UPO Environmental Molecular Toxicology Laboratory. The study molecule: Numerous tests have been carried out through the "in silico" approach geared toward mathematical modeling of its protein structure and complex mechanisms of action simulated through artificial intelligence systems, followed by direct laboratory analysis involving biosynthesis of DSUP by genetically modified bacteria and related tests. Both approaches, applied synergistically, aim to make it accessible and useful for the protection of human health.
> 更多
科展作品檢索
「飛到西飛到東」對應異頻穩定三角訊號之波形分析
本篇研究以探討多重訊號同時輸入時的訊號干擾問題出發,類比至國立臺灣師範大學數學系游森棚教授所提出的數學問題: 飛到西飛到東」,希望藉由導出多質點移動速率與其距原點間的位置關係,找出訊號重疊程度之峰值條件,藉此有望應用於硬體接收器的訊號輸出處理,或類比至電路設計與物流規劃等,達到避免相互干擾與提升傳輸效率的功用。 在內文中我們先以分段討論的方式解決期刊問題,並導出在任意系統中可快速辨別物體運動狀態之高斯函數。隨後以參數化曲線路徑與向量式的質點位置,拓展主題可適用範圍的自由度,再以高斯函數法和傅立葉級數法得出解型式之聯立組,最後利用數系之封閉性,將主題進一步約化處理。
> 更多
科展作品檢索
以3D模型沉降實驗探討有孔蟲Globigerinoidesella fistulosa的消失
有孔蟲Globigerinoidesella fistulosa的滅絕時機(1.7 million years ago, Ma)恰與東西赤道太平洋水溫由似聖嬰現象狀態轉變為似反聖嬰現象狀態的時機相近,前人推論可能是有孔蟲為了維持雷諾數,將自身殼體生長階段倒退為較小的型態,進而提出假設「當垂直水溫梯度變緩,黏滯度變小,Trilobatus sacculifer complex 為了維持雷諾數,殼體半徑、沉降速率和殼體與水的密度差必須相對變小」。本研究利用3D列印的G. fistulosa、T. sacculifer有孔蟲殼體模型進行沉降實驗驗證此假設,同時探討浮游性有孔蟲的殼體型態對其沉降模式的影響,由多個角度分析浮游性有孔蟲改變外型的現象。
> 更多
科展作品檢索
Wetting Tracing Paper—Fiber Porous Media Curling Behavior and Mechanisms
This research presents a novel approach to understanding the curling and uncurling behavior of tracing paper when exposed to water, identifying limitations in traditional diffusion-based models like Fick’s second law. While Fick's model adequately represents the uncurling phase, where water content is stable, it falls short during the curling phase due to its inability to account for dynamic changes in diffusivity. Our study identifies capillary action, modeled through Richards' equation, as the primary mechanism in the curling phase, where diffusivity varies with water content due to capillary-driven water movement through the paper's porous structure. Experimental data align well with the Richards' equation model, highlighting a saturation point where curvature peaks, governed by evaporation's impact on moisture balance. To simulate this phenomenon, we developed a finite difference approximation scheme based on Richards' equation, discretizing the spatial domain for detailed control over moisture dynamics and incorporating the Robin boundary condition with virtual points. This approach, combined with evaporation considerations, produces simulation results consistent with observed data, emphasizing evaporation’s role in steady-state moisture gradients and the subsequent deformation mechanics. Our findings further reveal that factors like paper thickness, temperature, and salt concentration significantly influence curling behavior. We established linear correlations between peak time and thickness reciprocal, as well as between peak curvature and thickness squared, supporting theoretical models. Temperature affects both peak curvature and curling rate due to changes in viscosity and surface tension, and higher temperatures prevent full uncurling due to sustained evaporation effects. Increased salt concentration heightens peak curvature without altering expansion ratio, suggesting additional variables in play.
> 更多
本作品由2023年IMO的第五題出發,希望探索在忍者通道中的其他性質,首先思考改變每排中放入的球數並觀察規律,進而推廣到三維圓圈塔中的性質,最後使用hyper-cube(超立方體)的情況進行一般化的推廣與構造的優化,完成最小值問題的求解,另外也對於特例部分探索解的總數。
> 更多
本研究旨在透過LLM 將影片內容轉為口述影像,探討及比較不同影片處理方式、LLM 對於圖片及影片的敘述,串接成一套自動化的口述影像系統。口述影像原本是為視障者製作的,現在本研究調整系統,讓有需求的一般大眾也能有效、容易及快速的了解影片內容。 本研究中的口述影像系統具有以下特點: (一)利用LLM 擅於處理視覺訊息及自然語言的優勢,將影片分為多張圖片,由LLM分別生成敘述後再整合為影片的整體敘述。 (二)運用LLM 會留存對話紀錄的特性,使用者可在系統中針對疑問與LLM進行問答。 (三)串接不同的 LLM,尋找製作口述影像的最佳組合。 藉由LLM 將影片轉換為口述影像,實現互動式的口述影像服務。除了可以滿足視障者的觀影需求,更重要的是當一般民眾沒有時間觀看影片時,也能透過口述影像系統了解影片內容。
> 更多
科展作品檢索
非對稱反摺溝槽陣列過熱表面之液滴自推性能及冷卻效率
工業中時常會運用噴霧冷卻,以液滴的潛熱變化冷卻高溫表面。因此為了提升高溫噴霧冷卻的效率,本研究基於過往文獻與(Hsu, 2023)共同研究微奈米結構表面ARG上液滴的碰撞運動,並由實驗推論高溫表面蒸氣層和氣泡推力的作用。接著由單一液滴碰撞實驗推導實驗和理論受力模型並進行比較。最後進行單一液滴冷卻實驗並推論連續液滴冷卻實驗結果。本研究發現ARG表面的各運動特性均優於文獻,且利用液滴的受力更全面地了解液滴運動和冷卻效率的關係,更在最後驗證其冷卻效率優於對照組,並發想探討連續液滴冷卻的實驗方法,以更貼合工業上實際的噴霧冷卻。經過此研究,ARG表面能夠實際應用於工業上高溫表面的噴霧冷卻。
> 更多
科展作品檢索
Decoding Climate Resilience: Functional Profiling of Protein Phosphatase 2C Family Genes for Abiotic Stress Tolerance in Rice
Problem • Rice is the primary cereal crop consumed by nearly half the population worldwide • By 2050, there will be a 50% increase in demand for rice • The world’s poor populations depend more on rice, both for income and consumption, than any other food. Rice is the single-largest source of employment and income for rural people • Worldwide, 51–82% of agricultural crop yield is lost annually due to abiotic stress due to climate change • Climate change causes extreme temperatures, erratic rainfall, dangerous droughts, and increased salinity from rising sea levels Solution • To adapt to abiotic stress, rice has intricate signaling pathways, particularly those mediated by the phytohormone abscisic acid (ABA), that cause an increase in stress tolerance • Clade A genes of the Protein Phosphatase 2C (PP2C) gene family are known to be negative regulators of the ABA signaling pathway. • “Deleting” these genes activates the ABA pathway and increases stress tolerance in rice without inducing stress CRISPR gene editing technology is the ideal solution Research Goal • While the role of PP2C genes in stress response is recognized, there is a gap in understanding the specific genes within this family that contribute significantly to stress signaling. Furthermore, there is a need for a detailed investigation into the effects of targeted CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) genome editing on rice stress response pathways.
> 更多
科展作品檢索
利用體外測試方法探討生醫水凝膠與材料表面附著性質之關聯
Investigation of the relationship between biomedical hydrogels and surface adhesion properties using in vitro testing methods
醫療級水凝膠在注入人體後容易因運動行為而產生位移,因此需要體外測試方法來評估水凝膠的附著性,以製備適合不同部位使用的水凝膠。本研究設計兩種測試方法來模擬水凝膠在人體的斜角流動狀態和旋轉流動狀態的位移,藉此推斷水凝膠施打入體內後的變化。本研究採用兩種不同黏性的水凝膠和不同粗糙度表面如人工皮、陶瓷和金屬來模擬人體部位的接觸面,探討水凝膠的附著性質。斜角流動測試下,黏性高的水凝膠在陶瓷和金屬 30°、45°及90°的斜角下幾乎不會流動,黏性低的水凝膠則會隨著角度的增加而流速加快。陶瓷粗糙度最高,水凝膠在其表面上附著性質較強。旋轉流動測試下,高黏性的水凝膠在模擬跑步時都具穩定性,而低黏性則只適用於較穩定的步行狀況。體外測試方法能區分不同黏性水凝膠的附著性質,說明此方法可作為篩選適用的水凝膠的依據。
> 更多
科展作品檢索
以卵黃細胞模擬紅血球在血管中之流動表現與潛在應用價值
本研究以塑膠水管、雞卵細胞搭配不同液體黏度,建置出七種生理情境,並藉由蒐集卵黃形變狀態、速率、側截面積,建構紅血球在血管中流動表現的模型,希望能達到預測生理情境的效果。研究的最後,我們使用Python撰寫程式,協助自動追蹤卵黃的最大瞬時速率與當下的側截面積。本研究發現卵黃會因流動速率的變化產生相對形變避免破裂;當模擬正常微血管時含有0.03%酒精,流動速率會提高;當模擬緊張型微血管時含有0.5%酒精,流動速率較接近正常微血管。另外,模擬微血管中的卵黃若在流動時受到阻力,比表面積會增加,但在小動脈模擬中卻相反;在模擬緊張型微血管時,隨著管內液體黏度上升,卵黃出現最大瞬時速率的位置離心臟越遠。
> 更多
科展作品檢索
含鐵、鎳之過渡金屬錯合物相變材料研究暨應用研析
量子運算發展日新月異,人類對上網溝通保密的需要與日俱增。市場已有量子資訊加解密所需的金鑰分配系統(QKD)搭配機密資料保險庫(Archive)。然實體金鑰因其安全性,不可或缺。本文探討以製備含鐵、鎳過渡金屬錯合物,利用含 X 光繞射儀等設備檢測、分析其結構與相變。並研析將該錯合物作為分子開關裝置,導入半導體製程,應用於研發上述金鑰之可行性。
> 更多